首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Syntheses of l-dopa 1a glucoside 10a,b and dl-dopa 1b glycosides 1018 with d-glucose 2, d-galactose 3, d-mannose 4, d-fructose 5, d-arabinose 6, lactose 7, d-sorbitol 8 and d-mannitol 9 were carried out using amyloglucosidase from Rhizopus mold, β-glucosidase isolated from sweet almond and immobilized β-glucosidase. Invariably, l-dopa and dl-dopa gave low to good yields of glycosides 10–18 at 12–49% range and only mono glycosylated products were detected through glycosylation/arylation at the third or fourth OH positions of l-dopa 1a and dl-dopa 1b. Amyloglucosidase showed selectivity with d-mannose 4 to give 4-O-C1β and d-sorbitol 8 to give 4-O-C6-O-arylated product. β-Glucosidase exhibited selectivity with d-mannose 4 to give 4-O-C1β and lactose 7 to give 4-O-C1β product. Immobilized β-glucosidase did not show any selectivity. Antioxidant and angiotensin converting enzyme inhibition (ACE) activities of the glycosides were evaluated glycosides, out of which l-3-hydroxy-4-O-(β-d-galactopyranosyl-(1′→4)β-d-glucopyranosyl) phenylalanine 16 at 0.9 ± 0.05 mM and dl-3-hydroxy-4-O-(β-d-glucopyranosyl) phenylalanine 11b,c at 0.98 ± 0.05 mM showed the best IC50 values for antioxidant activity and dl-3-hydroxy-4-O-(6-d-sorbitol)phenylalanine 17 at 0.56 ± 0.03 mM, l-dopa-d-glucoside 10a,b at 1.1 ± 0.06 mM and dl-3-hydroxy-4-O-(d-glucopyranosyl)phenylalanine 11a-d at 1.2 ± 0.06 mM exhibited the best IC50 values for ACE inhibition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
This work examined the accumulation of artemisinin and related secondary metabolism pathways in hairy root cultures of Artemisia annua L. induced by a fungal-derived cerebroside (2S,2′R,3R,3′E,4E,8E)-1-O-β-d-glucopyranosyl-2-N-(2′-hydroxy-3′-octadecenoyl)-3-hydroxy-9-methyl-4,8-sphingadienine. The presence of the cerebroside induced nitric oxide (NO) burst and artemisinin biosynthesis in the hairy roots. The endogenous NO generation was examined to be involved in the cerebroside-induced biosynthesis of artemisinin by using NO inhibitors, N ω-nitro-l-arginine methyl ester and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. The gene expression and activity of 3-hydroxy-3-methylglutaryl CoA reductase and 1-deoxy-d-xylulose 5-phosphate synthase were stimulated by the cerebroside, but more strongly by the potentiation of NO. While the mevalonate pathway inhibitor, mevinolin, only partially inhibited the induced artemisinin accumulation, the plastidic 2-C-methyl-d-erythritol 4-phosphate pathway inhibitor, fosmidomycin, nearly arrested artemisinin accumulation induced by cerebroside and the combination elicitation with an NO donor, sodium nitroprusside (SNP). With the potentiation by SNP at 10 μM, the cerebroside elicitor stimulated artemisinin production in 20-day-old hairy root cultures up to 22.4 mg/l, a 2.3-fold increase over the control. These results suggest that cerebroside plays as a novel elicitor and the involvement of NO in the signaling pathway of the elicitor activity for artemisinin biosynthesis.  相似文献   

4.
Antigen 85 (ag85) is a complex of acyltransferases (ag85A–C) known to play a role in the mycolation of the d-arabino-d-galactan (AG) component of the mycobacterial cell wall. In order to better understand the chemistry and substrate specificity of ag85, a trehalose monomycolate mimic p-nitrophenyl 6-O-octanoyl-β-d-glucopyranoside (1) containing an octanoyl moiety in lieu of a mycolyl moiety was synthesized as an acyl donor. Arabinofuranoside acceptors, methyl α-d-arabinofuranoside (2), methyl β-d-arabinofuranoside (3), and methyl 2-O-β-d-arabinofuranosyl-α-d-arabinofuranoside (9) were synthesized to mimic the terminal saccharides found on the AG. The acyl transfer reaction between acyl donor 1 and acceptors 2, 3, and 9 in the presence of ag85C from Mycobacterium tuberculosis (M. tuberculosis) resulted in the formation of esters, methyl 2, 5-di-O-octanoyl-α-d-arabinofuranoside (10), methyl 5-O-octanoyl-β-d-arabinofuranoside (11), and methyl 2-O-(5-O-octanoyl-β-d-arabinofuranosyl)-5-O-octanoyl-α-d-arabinofuranoside (12) in 2 h, 2 h and 8 h, respectively. The initial velocities of the reactions were determined with a newly developed assay for acyltransferases. As expected, the regioselectivity corresponds to mycolylation patterns found at the terminus of the AG in M. tuberculosis. The study shows that d-arabinose-based derivatives are capable of acting as substrates for ag85C-mediated acyl-transfer and the acyl glycoside 1 can be used in lieu of TMM extracted from bacteria to study ag85-mediated acyl-transfer and inhibition leading to the better understanding of the ag85 protein class. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
We measured net ecosystem CO2 flux (F n) and ecosystem respiration (R E), and estimated gross ecosystem photosynthesis (P g) by difference, for two years in a temperate heath ecosystem using a chamber method. The exchange rates of carbon were high and of similar magnitude as for productive forest ecosystems with a net ecosystem carbon gain during the second year of 293 ± 11 g C m−2 year−1 showing that the carbon sink strength of heather-dominated ecosystems may be considerable when C. vulgaris is in the building phase of its life cycle. The estimated gross ecosystem photosynthesis and ecosystem respiration from October to March was 22% and 30% of annual flux, respectively, suggesting that both cold-season carbon gain and loss were important in the annual carbon cycle of the ecosystem. Model fit of R E of a classic, first-order exponential equation related to temperature (second year; R 2 = 0.65) was improved when the P g rate was incorporated into the model (second year; R 2 = 0.79), suggesting that daytime R E increased with increasing photosynthesis. Furthermore, the temperature sensitivity of R E decreased from apparent Q 10 values of 3.3 to 3.9 by the classic equation to a more realistic Q 10 of 2.5 by the modified model. The model introduces R photo, which describes the part of respiration being tightly coupled to the photosynthetic rate. It makes up 5% of the assimilated carbon dioxide flux at 0°C and 35% at 20°C implying a high sensitivity of respiration to photosynthesis during summer. The simple model provides an easily applied, non-intrusive tool for investigating seasonal trends in the relationship between ecosystem carbon sequestration and respiration.  相似文献   

6.
The gene encoding an α-l-arabinofuranosidase that could biotransform ginsenoside Rc {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-[α-l-arabinofuranosyl-(1–6)-β-d-glucopyranosyl]-20(S)-protopanaxadiol} to ginsenoside Rd {3-O-[β-d-glucopyranosyl-(1–2)-β-d-glucopyranosyl]-20-O-β-d-glucopyranosyl-20(S)-protopanaxadiol} was cloned from a soil bacterium, Rhodanobacter ginsenosidimutans strain Gsoil 3054T, and the recombinant enzyme was characterized. The enzyme (AbfA) hydrolyzed the arabinofuranosyl moiety from ginsenoside Rc and was classified as a family 51 glycoside hydrolase based on amino acid sequence analysis. Recombinant AbfA expressed in Escherichia coli hydrolyzed non-reducing arabinofuranoside moieties with apparent K m values of 0.53 ± 0.07 and 0.30 ± 0.07 mM and V max values of 27.1 ± 1.7 and 49.6 ± 4.1 μmol min−1 mg−1 of protein for p-nitrophenyl-α-l-arabinofuranoside and ginsenoside Rc, respectively. The enzyme exhibited preferential substrate specificity of the exo-type mode of action towards polyarabinosides or oligoarabinosides. AbfA demonstrated substrate-specific activity for the bioconversion of ginsenosides, as it hydrolyzed only arabinofuranoside moieties from ginsenoside Rc and its derivatives, and not other sugar groups. These results are the first report of a glycoside hydrolase family 51 α-l-arabinofuranosidase that can transform ginsenoside Rc to Rd.  相似文献   

7.
Biosynthesis of six saponins (ginsenosides) in suspension culture of P. quinquefolium Z5 was investigated. Ginsenoside content in biomass reached the highest level, nearly 30 mg g−1 d.w., between 25 and 30 days of the culture. Saponins were synthesized simultaneously with cell growth but their synthesis rate was not proportional to the growth rate. During the phase of rapid biomass multiplication, after which biomass reached 90% of its maximum yield, only half examined ginsenosides was produced. The second half of the final saponins yield was produced during the slow growth phase, in which only 10% of biomass was grown. During the intensive growth phase the productivity of six saponins examined per biomass (dry weight) unit was 3.4 μg mg−1 d.w. day−1, however, this parameter calculated for slow growth phase reached nearly 30 μg mg−1 d.w. day−1. There were differences in increase of the contents of six saponins determined in biomass, and it was the highest for saponins Re (20(S)-protopanaxatriol-6-[O-α-l-rhamnopyranosyl(1 → 2)-β-d-glucopyranoside]-20-O-β-d-glucopyranoside) and Rg1 (20(S)-protopanaxatriol-6,20-di-O-β-d-glucoside).  相似文献   

8.
The emergence of 17-year periodical cicadas in Maryland, USA, in 2004 provided a unique opportunity to study the effect of a large, but temporally limited, resource pulse of arthropod detritus on stream ecosystem function. Cicada emergence was quantified in the forests adjacent to two small streams with different histories of riparian disturbance (Intact and Disturbed sites). We estimated the input of cicada detritus to the streams, described its retention and breakdown dynamics, and measured whole-stream respiration over the cicada flight season (May–July). Average emergence density was significantly greater at the Intact site, but average cicada detritus input rates were greater at the Disturbed site. Cicada detritus was locally retained within both streams and rapidly broke down. Daily whole-stream respiration (CR24) at both sites responded dramatically to the cicada pulse, with CR24 doubling pre-cicada measurements following the period of greatest cicada input (Intact: 12.82 → 23.78 g O2 m−2 d−1; Disturbed: 2.76 → 5.77 g O2 m−2 d−1). CR24 returned to baseline levels when cicada input decreased at the Intact site, but more than doubled again at the Disturbed site (13.14 g O2 m−2 d−1), despite a decline in cicada input rate. Differences in respiration response may be a function of differences in cicada input rates as well as differences in microbial community activity. The strong effects on stream ecosystem function exerted by a short but intense input of periodical cicada detritus may provide insights regarding the response of streams to other irregular resource pulses. HM, MP, LC, and DR conceived and designed study; HM, LC, and DR performed research; HM, LC, and DR analyzed data; HM, MP, LC, and DR wrote the paper.  相似文献   

9.
The biocatalytic ability of transgenic crown galls of Panax quinquefolium was evaluated by using eugenol (1) as a substrate and suspension cultures of Nicotiana tabacum as control system. Three biotransformed products, namely: 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranoside (2, 67.11%), 2-methoxy-4-(2-propenyl)phenyl-O-β-d-glucopyranosyl (6′ → 1″)-β-d-xylopyranoside (3, 2.85%) and methyl eugenol (4, 14.30%) were obtained after 5 days of administration of eugenol to the suspension cultures of transgenic crown galls of P. quinquefolium. In contrast, only one product, compound 2 (15.41%), was obtained in suspension cultures of N. tabacum after 5 days of incubation. The results indicated that the glycosylation ability of transgenic crown galls of P. quinquefolium was much higher than that of the cultured cells of N. tabacum.  相似文献   

10.
Xylem parenchyma cells (XPCs) in trees adapt to subzero temperatures by deep supercooling. Our previous study indicated the possibility of the presence of diverse kinds of supercooling-facilitating (SCF; anti-ice nucleation) substances in XPCs of katsura tree (Cercidiphyllum japonicum), all of which might have an important role in deep supercooling of XPCs. In the previous study, a few kinds of SCF flavonol glycosides were identified. Thus, in the present study, we tried to identify other kinds of SCF substances in XPCs of katsura tree. SCF substances were purified from xylem extracts by silica gel column chromatography and Sephadex LH-20 column chromatography. Then, four SCF substances isolated were identified by UV, mass and nuclear magnetic resonance analyses. The results showed that the four kinds of hydrolyzable gallotannins, 2,2′,5-tri-O-galloyl-α,β-d-hamamelose (trigalloyl Ham or kurigalin), 1,2,6-tri-O-galloyl-β-d-glucopyranoside (trigalloyl Glc), 1,2,3,6-tetra-O-galloyl-β-d-glucopyranoside (tetragalloyl Glc) and 1,2,3,4,6-penta-O-galloyl-β-d-glucopyranoside (pentagalloyl Glc), in XPCs exhibited supercooling capabilities in the range of 1.5–4.5°C, at a concentration of 1 mg mL−1. These SCF substances, including flavonol glycosides and hydrolyzable gallotannins, may contribute to the supercooling in XPCs of katsura tree.  相似文献   

11.
Long‐term trends in ecosystem resource use efficiencies (RUEs) and their controlling factors are key pieces of information for understanding how an ecosystem responds to climate change. We used continuous eddy covariance and microclimate data over the period 1999–2017 from a 120‐year‐old black spruce stand in central Saskatchewan, Canada, to assess interannual variability, long‐term trends, and key controlling factors of gross ecosystem production (GEP) and the RUEs of carbon (CUE = net primary production [NPP]/GEP), light (LUE = GEP/absorbed photosynthetic radiation [APAR]), and water (WUE = GEP/evapotranspiration [E]). At this site, annual GEP has shown an increasing trend over the 19 years (p < 0.01), which may be attributed to rising atmospheric CO2 concentration. Interannual variability in GEP, aside from its increasing trend, was most strongly related to spring temperatures. Associated with the significant increase in annual GEP were relatively small changes in NPP, APAR, and E, so that annual CUE showed a decreasing trend and annual LUE and WUE showed increasing trends over the 19 years. The long‐term trends in the RUEs were related to the increasing CO2 concentration. Further analysis of detrended RUEs showed that their interannual variation was impacted most strongly by air temperature. Two‐factor linear models combining CO2 concentration and air temperature performed well (R2~0.60) in simulating annual RUEs. LUE and WUE were positively correlated both annually and seasonally, while LUE and CUE were mostly negatively correlated. Our results showed divergent long‐term trends among CUE, LUE, and WUE and highlighted the need to account for the combined effects of climatic controls and the ‘CO2 fertilization effect’ on long‐term variations in RUEs. Since most RUE‐based models rely primarily on one resource limitation, the observed patterns of relative change among the three RUEs may have important implications for RUE‐based modeling of C fluxes.  相似文献   

12.
5′-O-β-d-Galactosyl-floxuridine, a potential novel prodrug, was synthesized with a yield of 75% through β-galactosidase-catalyzed transgalactosylation. This enzyme displayed absolute regioselectivity toward the 5′-position of floxuridine. For the reaction, the optimal conditions were pH 6.5 at 45°C for 60 h with floxuridine to o-nitrophenyl-β-d-galactoside at 2:1 (mol/mol). Under these conditions, the initial reaction rate and the maximum yield were 0.28 mM h−1 and 75%, respectively.  相似文献   

13.
Habitat loss is the single greatest threat to persistence of the critically threatened California tiger salamander (Ambystoma californiense). To aid management plans that designate critical habitat for this species, I developed and characterized 21 tetranucleotide microsatellite markers using two native populations in Santa Barbara and Alameda Counties. Allelic variation and average heterozygosities were lower in the endangered Santa Barbara population (allele range 1–4, mean 2.4; H O = 0.308 H E = 0.288) compared with the threatened Alameda population (allele range 2–10, mean 6.7; H O = 0.712, H E = 0.722). In-depth population studies using these markers will provide vital information for plans to assign critical habitat that optimize gene flow among breeding populations, as well as for identifying non-native hybrid genotypes that threaten native A. californiense stocks. Beyond the conservation goals for A. californiense, the close phylogenetic relationships within the tiger salamander complex also suggest a broad utility for population studies using these markers.  相似文献   

14.
During the night, plant water loss can occur either through the roots, as hydraulic redistribution (HR), or through the leaves via the stoma, as nocturnal transpiration (En), which was methodologically difficult to separate from stem refilling (Re). While HR and En have been reported across a range of species, ecosystem, and climate zone, there is little understanding on the interactions between En and/or Re and HR. As water movement at night occurs via gradients of water potential, it is expected that during periods of high atmospheric vapor pressure deficit (VPD), water loss via En will override water loss via HR. To test this hypothesis, sap flow in stems and roots of Populus euphratica Oliv. trees, growing in a riparian zone in a hyperarid climate, was measured once in a year. Nocturnal stem sap flow was separated into En and Re using the “forecasted refilling” method. Substantial nocturnal sap flow (38% of 24‐hr flux on average) was observed and positively correlated with VPD; however, the strength of the correlation was lower (R2 = .55) than diurnal sap flow (Ed) (R2 = .72), suggesting that nocturnal stem sap flow was attributed to both water loss through the canopy and replenishment of water in stem tissues. Partitioning of nocturnal sap flow shows that Re constituted approximately 80%, and En ~20%, of nocturnal sap flow. The amount of root sap flow attributed to redistribution was negatively related to Ed (R2 = .69) and the amount of acropetally sap flow in stems, Re (R2 = .41) and En (R2 = .14). It was suggested that the magnitude of HR is more strongly depressed by Re that was recharge to the water loss via Ed than by En. It was consistent with whole‐tree water balance theory, that the nighttime upward sap flow to xylem, stem refilling and transpiration, may depress hydraulic redistribution of roots.  相似文献   

15.
Although predictions of potential distributions of invasive species often assume niche conservatism, recent analyses suggest that niche shifts can also occur. Thus, further studies are necessary to provide a better understanding of niche dynamics and to predict geographic distribution in invaded areas. The present study investigated the niche shift hypothesis at a broad biogeographical scale, using the comprehensive distribution of the invasive species Zaprionus indianus in its native (Africa) and invaded (America and India) ranges. Z. indianus is a very successful invasive species that presents high adaptive flexibility and extreme physiological tolerance. To investigate whether Z. indianus changed its climatic niche from Africa to America and India, multivariate analyses, as well as ecological niche modeling procedures (GARP, MAXENT and Mahalanobis distances), were used. Multivariate analyses showed that the niche spaces of Z. indianus in Africa, India and the Americas were significantly different (Wilks’ λ from a Multivariate Analysis of Variance, MANOVA = 0.115; P < 0.0001). Out of 108 occurrences in America, only 11 (ca 10%) were classified, by Canonical Variate Analysis scores, as belonging to its original range in Africa, whereas only 5% of the 39 occurrences in India were classified as belonging to Z. indianus’ original range. Consensus results from MAXENT, GARP and Mahalanobis distances correctly predicted only 27% of the occurrences in India and 85% of occurrences in America. Thus, all analyses showed that Zaprionus indianus quickly expanded ranges into different environments in the invaded areas, suggesting climatic niche shifts, primarily in India.  相似文献   

16.
Inhibition of terminal oxidases by nitric oxide (NO) has been extensively investigated as it plays a role in regulation of cellular respiration and pathophysiology. Cytochrome bd is a tri-heme (b558, b595, d) bacterial oxidase containing no copper that couples electron transfer from quinol to O2 (to produce H2O) with generation of a transmembrane protonmotive force. In this work, we investigated by stopped-flow absorption spectroscopy the reaction of NO with Escherichia coli cytochrome bd in the fully oxidized (O) state. We show that under anaerobic conditions, the O state of the enzyme binds NO at heme d with second-order rate constant kon = 1.5 ± 0.2 × 102 M−1 s−1, yielding a nitrosyl adduct (d3+–NO or d2+–NO+) with characteristic optical features (an absorption increase at 639 nm and a red shift of the Soret band). The reaction mechanism is remarkably different from that of O cytochrome c oxidase in which the heme–copper binuclear center reacts with NO approximately three orders of magnitude faster, forming nitrite. The data allow us to conclude that in the reaction of NO with terminal oxidases in the O state, CuB is indispensable for rapid oxidation of NO into nitrite.  相似文献   

17.
Preparative-scale fermentation of ginsenoside Rb1 (1) with Acremonium strictum AS 3.2058 gave three new compounds, 12β-hydroxydammar-3-one-20 (S)-O-β-d-glucopyranoside (7), 12β, 25-dihydroxydammar-(E)-20(22)-ene-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (8), and 12β, 20 (R), 25-trihydroxydammar-3-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranoside (9), along with five known compounds, ginsenoside Rd (2), gypenoside XVII (3), ginsenoside Rg3 (4), ginsenoside F2 (5), and compound K (6). The structural elucidation of these metabolites was based primarily on one- and two-dimensional nuclear magnetic resonance and high-resolution electron spray ionization mass spectra analyses. Among these compounds, 26 are also the metabolites of ginsenoside Rb1 in mammals. This result demonstrated that microbial culture parallels mammalian metabolism; therefore, A. strictum might be a useful tool for generating mammalian metabolites of related analogs of ginsenosides for complete structural identification and for further use in pharmaceutical research in this series of compounds. In addition, the biotransformation kinetics was also investigated.  相似文献   

18.
Corynebacterium glutamicum R was metabolically engineered to broaden its sugar utilization range to d-xylose and d-cellobiose contained in lignocellulose hydrolysates. The resultant recombinants expressed Escherichia coli xylA and xylB genes, encoding d-xylose isomerase and xylulokinase, respectively, for d-xylose utilization and expressed C. glutamicum R bglF 317A and bglA genes, encoding phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS) β-glucoside-specific enzyme IIBCA component and phospho-β-glucosidase, respectively, for d-cellobiose utilization. The genes were fused to the non-essential genomic regions distributed around the C. glutamicum R chromosome and were under the control of their respective constitutive promoter trc and tac that permitted their expression even in the presence of d-glucose. The enzyme activities of resulting recombinants increased with the increase in the number of respective integrated genes. Maximal sugar utilization was realized with strain X5C1 harboring five xylA–xylB clusters and one bglF 317A bglA cluster. In both d-cellobiose and d-xylose utilization, the sugar consumption rates by genomic DNA-integrated strain were faster than those by plasmid-bearing strain, respectively. In mineral medium containing 40 g l−1 d-glucose, 20 g l−1 d-xylose, and 10 g l−1 d-cellobiose, strain X5C1 simultaneously and completely consumed these sugars within 12 h and produced predominantly lactic and succinic acids under growth-arrested conditions.  相似文献   

19.
Two sucrose phosphorylases were employed for glycosylation of carboxylic acid compounds. Streptococcus mutans sucrose phosphorylase showed remarkable transglycosylating activity, especially under acidic conditions. Leuconostoc mesenteroides sucrose phosphorylase exhibited very weak transglycosylating activity. Three main products were detected from the reaction mixture using benzoic acid and sucrose as an acceptor and a donor molecule, respectively. These compounds were identified as 1-O-benzoyl α-d-glucopyranoside, 2-O-benzoyl α-d-glucopyranose, and 2-O-benzoyl β-d-glucopyranose by 1D-and 2D-NMR analyses of the isolated products and their acetylated products. Time-course analyses proved that 1-O-benzoyl α-d-glucopyranoside was initially produced by the transglycosylation reaction of the enzyme. 2-O-Benzoyl α-d-glucopyranose and 2-O-benzoyl β-d-glucopyranose were produced from 1-O-benzoyl α-d-glucopyranoside by intramolecular acyl migration reaction. S. mutans sucrose phosphorylase showed broad acceptor-specificity. This sucrose phosphorylase catalyzed transglycosylation to various carboxylic compounds such as short-chain fatty acids, hydroxy acids, dicarboxylic acids, and phenolic carboxylic acids. 1-O-Acetyl α-d-glucopyranoside was also enzymatically synthesized by transglucosylation reaction of the enzyme. The sensory test of acetic acid and the glucosides revealed that the sour taste of acetic acid glucosides was significantly lower than that of acetic acid.  相似文献   

20.
Eight microsatellite loci of Calystegia soldanella useful for comparisons of the genetic structure of isolated populations in the ancient Lake Biwa and coastal populations in Japan were isolated and characterised. The number of alleles ranged from 2 to 5. The expected (H E) and observed (H O) heterozygosities were 0.097–0.583 and 0.000–0.380, respectively, from 100 individuals from Lake Biwa and coastal populations. Seven of the eight loci exhibited significantly fewer heterozygotes than expected based on the Hardy–Weinberg equilibrium (< 0.05). These primers amplifying microsatellites in C. soldanella may provide a population genetics tool useful in the establishment of a conservation strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号