首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The major facilitator superfamily (MFS) represents the largest collection of evolutionarily related members within the class of membrane 'carrier' proteins. OxlT, a representative example of the MFS, is an oxalate-transporting membrane protein in Oxalobacter formigenes. From an electron crystallographic analysis of two-dimensional crystals of OxlT, we have determined the projection structure of this membrane transporter. The projection map at 6 A resolution indicates the presence of 12 transmembrane helices in each monomer of OxlT, with one set of six helices related to the other set by an approximate internal two-fold axis. The projection map reveals the existence of a central cavity, which we propose to be part of the pathway of oxalate transport. By combining information from the projection map with related biochemical data, we present probable models for the architectural arrangement of transmembrane helices in this protein superfamily.  相似文献   

2.
The major facilitator superfamily includes a large collection of evolutionarily related proteins that have been implicated in the transport of a variety of solutes and metabolites across the membranes of organisms ranging from bacteria to humans. We have recently reported the three-dimensional structure, at 6.5 A resolution, of the oxalate transporter, OxlT, a representative member of this superfamily. In the oxalate-bound state, 12 helices surround a central cavity to form a remarkably symmetrical structure that displays a well-defined pseudo twofold axis perpendicular to the plane of the membrane as well as two less pronounced, mutually perpendicular pseudo twofold axes in the plane of the membrane. Here, we combined this structural information with sequence information from other members of this protein family to arrive at models for the arrangement of helices in this superfamily of transport proteins. Our analysis narrows down the number of helix arrangements from about a billion starting possibilities to a single probable model for the relative spatial arrangement for the 12 helices, consistent both with our structural findings and with the majority of previous biochemical studies on members of this superfamily.  相似文献   

3.
Membrane proteins that belong to the major facilitator superfamily (MFS) are found in organisms across the evolutionary spectrum and mediate the transport of a variety of substrates ranging from small metabolites to neurotransmitters. The oxalate transporter (OxlT) is a representative MFS protein, and exchanges formate for oxalate across the cytoplasmic membrane of the organism Oxalobacter formigenes. Here, we present a structural model for the protein conformational changes that occur during oxalate transport by combining a three-dimensional map of the oxalate-bound, "closed" state of OxlT at 6.5 A determined by cryo-electron microscopy with a model of the "open" state of OxlT based on the atomic structures of the related transporters, glycerol-3-phosphate transporter (GlpT) and lactose permease (LacY). We demonstrate that the principal structural change associated with substrate transport is a concerted rocking movement of the two structurally similar halves of the protein relative to each other. Our structural model places two positively charged residues, Arg-272 and Lys-355 in the central cavity, suggesting that electrostatic interactions between these residues and the oxalate anion is a key step in generating the conformational change between the open and closed states of the transporter.  相似文献   

4.
Experiments were designed to evaluate the proximity of transmembrane helices two (TM2) and eleven (TM11) in the tertiary structure of OxlT, the oxalate:formate exchange transporter of Oxalobacter formigenes. A tandem duplication of the Factor Xa protease cleavage site (IEGRIEGR) was inserted into the central cytoplasmic loop of an OxlT cysteine-less derivative in which an endogenous cleavage site had been eliminated by mutagenesis (R248Q). Using this host, double cysteine derivatives were constructed so as to pair one of seventeen positions in TM2 with one of four positions in TM11. Following treatment of membrane vesicles with Cu(II)(1,10-phenanthroline)(3), molecular iodine, or N,N'-o-phenylenedimaleimide, samples were exposed to Factor Xa, and disulfide bond formation was assessed after SDS-polyacrylamide gel electrophoresis by staining with antibody directed against the OxlT C terminus. In the absence of disulfide bond formation, exposure to Factor Xa revealed the expected C-terminal 22-kDa fragment, a result unaffected by the presence of reductant. By contrast, after disulfide formation, OxlT mobility remained at 35 kDa, and appearance of the 22-kDa fragment required addition of 200 mm dithiothreitol prior to electrophoresis. The four TM11 positions chosen for cysteine substitution lie on a helical face known to interact with substrate. Similarly, TM2 positions supporting disulfide trapping were also confined to a single helical face. We conclude that TM2 and TM11 are in close juxtaposition to one another in the tertiary structure of OxlT.  相似文献   

5.
Melibiose permease (MelB) of Escherichia coli is a secondary transporter that couples the uptake of melibiose and various other galactosides to symport of cations that can be Na+, Li+ or H+. MelB belongs to the glycoside-pentoside-hexuronide: cation symporter family of porters and is suggested to have 12 transmembrane helices. We have determined the three-dimensional structure of MelB at 10A resolution in the membrane plane with cryo-electron microscopy from two-dimensional crystals. The three-dimensional map shows a heart-shaped molecule composed of two domains with a large central cavity between them. The structure is constricted at one side of the membrane while it is open to the other. The overall molecular shape resembles those of lactose permease and glycerol-3-phosphate transporter. However, organization of helices in MelB seems less symmetrical than in these two members of the major facilitator superfamily.  相似文献   

6.
OxlT, a secondary carrier found in Oxalobacter formigenes, mediates the exchange of divalent oxalate and monovalent formate. Because OxlT has an unusually high turnover number (greater than or equal to 1000/s), and because formate, one its substrates, shows high passive membrane permeability as formic acid, it has been difficult to obtain information on protein-substrate interactions using traditional methods in membrane biology. For this reason, we devised a new way to measure substrate dissociation constants. Detergent-solubilized material was exposed to inactivating temperatures in the absence or presence of OxlT substrates, and periodic reconstitution was used to monitor the kinetics of thermal decay. The data were consistent with a simple scheme in which only unliganded OxlT was temperature-sensitive; this premise, along with the assumption of equilibrium between liganded and unliganded species, allowed calculation of substrate dissociation constants for oxalate (18 +/- 3 microM), malonate (1.2 +/- 0.2 mM), and formate (3.1 +/- 0.6 mM). Further analysis revealed that substrate binding energy contributed at least 3.5 kcal/mol to stabilization of solubilized OxlT. Accordingly, we suggest that substrate binding energy is directly involved in driving protein structure reorganization during membrane transport. This new approach to analyzing protein-substrate interactions may have wider application in the study of membrane carriers.  相似文献   

7.
Wang X  Sarker RI  Maloney PC 《Biochemistry》2006,45(34):10344-10350
An OxlT homology model suggests R272 and K355 in transmembrane helices 8 and 11, respectively, are critical to OxlT-mediated transport. We offer positive evidence supporting this idea by studying OxlT function after cysteine residues were separately introduced at these positions. Without further treatment, both mutant proteins had a null phenotype when they were reconstituted into proteoliposomes. By contrast, significant recovery of function occurred when proteoliposomes were treated with MTSEA (methanethiosulfonate ethylamine), a thiol-specific reagent that implants a positively charged amino group. In each case, there was a 2-fold increase in the Michaelis constant (K(M)) for oxalate self-exchange (from 80 to 160 microM), along with a 5-fold (K355C) or 100-fold (R272C) reduction in V(max) compared to that of the cysteine-less parental protein. Analysis by MALDI-TOF confirmed that MTSEA introduced the desired modification. We also examined substrate selectivity for the treated derivatives. While oxalate remained the preferred substrate, there was a shift in preference among other substrates so that the normal rank order (oxalate > malonate > formate) was altered to favor smaller substrates (oxalate > formate > malonate). This shift is consistent with the idea that the substrate-binding site is reduced in size via introduction of the SCH(2)CH(2)NH(3)(+) adduct, which generates a side chain that is approximately 1.85 A longer than that of lysine or arginine. These findings lead us to conclude that R272 and K355 are essential components of the OxlT substrate-binding site.  相似文献   

8.
The glycerol-3-phosphate transporter (GlpT) is a member of the major facilitator superfamily (MFS). GlpT is an organic phosphate/inorganic phosphate antiporter. It shares a similar fold with other MFS transporters (e.g. LacY and EmrD) consisting of 12 transmembrane (TM) helices which form two domains (each of six TM helices) surrounding a central ligand-binding cavity. The TM helices (especially the cavity-lining helices) contain a large number of proline and glycine residues, which may aid in the conformational changes believed to underline the transport mechanism. Molecular dynamics simulations in a phospholipid bilayer have been used to compare the conformational properties of the isolated TM helices with those in the intact GlpT protein. Analysis of these simulations focuses on the role of proline-induced flexibility in the TM helices. Our results are consistent with the proposed rocker switch mechanism for transport by GlpT. In particular, the simulations highlight the cavity-lining helices (H4, H5, H10 and H11) as being significantly flexible, suggesting that the transport mechanism may involve intra-helix motions in addition to pseudo-rigid body motions of the N- and C-terminal domains relative to one another.  相似文献   

9.
We constructed a single cysteine panel encompassing transmembrane helix two (TM2) of OxlT, the oxalate/formate antiporter of Oxalobacter formigenes. Among the 21 positions targeted, cysteine substitution identified one (phenylalanine 59) as essential to OxlT expression and three (glutamine 56, glutamine 66, and serine 69) as potentially critical to OxlT function. By probing membranes with a bulky hydrophilic probe (Oregon Green maleimide) we also located a central inaccessible core of at least eight residues in length, extending from leucine 61 to glycine 68. Functional assays based on reconstitution of crude detergent extracts showed that of single cysteine mutants within the TM2 core only the Q63C variant was substantially (> or =95%) inhibited by thiol-specific agents (carboxyethyl methanethiosulfonate and ethylsulfonate methanethiosulfonate). Subsequent analytical work using the purified Q63C protein showed that inhibition by ethylsulfonate methanethiosulfonate was blocked by substrate and that the concentration dependence of such substrate protection occurred with a binding constant of 0.16 mm oxalate, comparable with the Michaelis constant observed for oxalate transport (0.23 mm). These findings lead us to conclude that position 63 lies on the OxlT translocation pathway. Our conclusion is strengthened by the finding that position 63, along with most other positions relevant to TM2 function, is found on a helical face that can be cross-linked to the pathway-facing surface of TM11 (Fu, D., Sarker, R. I., Bolton, E., and Maloney, P. C. (2001) J. Biol. Chem. 276, 8753-8760).  相似文献   

10.
The human erythrocyte facilitative glucose transporter (Glut1) is predicted to contain 12 transmembrane spanning alpha-helices based upon hydropathy plot analysis of the primary sequence. Five of these helices (3, 5, 7, 8, and 11) are capable of forming amphipathic structures. A model of GLUT1 tertiary structure has therefore been proposed in which the hydrophilic faces of several amphipathic helices are arranged to form a central aqueous channel through which glucose traverses the hydrophobic lipid bilayer. In order to test this model, we individually mutated each of the amino acid residues in transmembrane segment 7 to cysteine in an engineered GLUT1 molecule devoid of all native cysteines (C-less). Measurement of 2-deoxyglucose uptake in a Xenopus oocyte expression system revealed that nearly all of these mutants retain measurable transport activity. Over one-half of the cysteine mutants had significantly reduced specific activity relative to the C-less protein. The solvent accessibility and relative orientation of the residues within the helix was investigated by determining the sensitivity of the mutant transporters to inhibition by the sulfhydryl directed reagent p-chloromercuribenzene sulfonate (pCMBS). Cysteine replacement at six positions (Gln(282), Gln(283), Ile(287), Ala(289), Val(290), and Phe(291)), all near the exofacial side of the cell membrane, produced transporters that were inhibited by incubation with extracellular pCMBS. Residues predicted to be near the cytoplasmic side of the cell membrane were minimally affected by pCMBS. These data demonstrate that the exofacial portion of transmembrane segment 7 is accessible to the external solvent and provide evidence for the positioning of this alpha-helix within the glucose permeation pathway.  相似文献   

11.
The membrane topology of the colicin E1 channel domain was studied by fluorescence resonance energy transfer (FRET). The FRET involved a genetically encoded fluorescent amino acid (coumarin) as the donor and a selectively labeled cysteine residue tethered with DABMI (4-(dimethylamino)phenylazophenyl-4'-maleimide) as the FRET acceptor. The fluorescent coumarin residue was incorporated into the protein via an orthogonal tRNA/aminoacyl-tRNA synthetase pair that allowed selective incorporation into any site within the colicin channel domain. Each variant harbored a stop (TAG) mutation for coumarin incorporation and a cysteine (TGT) mutation for DABMI attachment. Six interhelical distances within helices 1-6 were determined using FRET analysis for both the soluble and membrane-bound states. The FRET data showed large changes in the interhelical distances among helices 3-6 upon membrane association providing new insight into the membrane-bound structure of the channel domain. In general, the coumarin-DABMI FRET interhelical efficiencies decreased upon membrane binding, building upon the umbrella model for the colicin channel. A tentative model for the closed state of the channel domain was developed based on current and previously published FRET data. The model suggests circular arrangement of helices 1-7 in a clockwise direction from the extracellular side and membrane interfacial association of helices 1, 6, 7, and 10 around the central transmembrane hairpin formed by helices 8 and 9.  相似文献   

12.
BACKGROUND: Homoserine kinase (HSK) catalyzes an important step in the threonine biosynthesis pathway. It belongs to a large yet unique class of small metabolite kinases, the GHMP kinase superfamily. Members in the GHMP superfamily participate in several essential metabolic pathways, such as amino acid biosynthesis, galactose metabolism, and the mevalonate pathway. RESULTS: The crystal structure of HSK and its complex with ADP reveal a novel nucleotide binding fold. The N-terminal domain contains an unusual left-handed betaalphabeta unit, while the C-terminal domain has a central alpha-beta plait fold with an insertion of four helices. The phosphate binding loop in HSK is distinct from the classical P loops found in many ATP/GTP binding proteins. The bound ADP molecule adopts a rare syn conformation and is in the opposite orientation from those bound to the P loop-containing proteins. Inspection of the substrate binding cavity indicates several amino acid residues that are likely to be involved in substrate binding and catalysis. CONCLUSIONS: The crystal structure of HSK is the first representative in the GHMP superfamily to have determined structure. It provides insight into the structure and nucleotide binding mechanism of not only the HSK family but also a variety of enzymes in the GHMP superfamily. Such enzymes include galactokinases, mevalonate kinases, phosphomevalonate kinases, mevalonate pyrophosphate decarboxylases, and several proteins of yet unknown functions.  相似文献   

13.
OxlT, the oxalate transporter of Oxalobacter formigenes, was studied to determine its oligomeric state in solution and in the membrane. Three independent approaches were used. First, we used triple-detector (SEC-LS) size exclusion chromatography to analyze purified OxlT in detergent/lipid micelles. These measurements evaluate protein mass in a manner independent of contributions from detergent and lipid; such work shows an average OxlT mass near 47 kDa for detergent-solubilized material, consistent with that expected for monomeric OxlT (46 kDa). A disulfide-linked OxlT mutant was used to verify that it was possible detect dimers under these conditions. A second approach used amino-reactive cross-linkers of varying spacer lengths to study OxlT in detergent/lipid micelles and in natural or artificial membranes, followed by analysis via sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These tests, performed under conditions where the presence of dimers can be documented for either of two known dimeric transporters (AdiC or TetL), indicate that OxlT exists as a monomer in the membrane and retains this status upon detergent solubilization. In a final test, we showed that reconstitution of OxlT into lipid vesicles at variable protein/lipid ratios has no effect on the specific activity of subsequent oxalate transport, as the OxlT content varies between 0.027 and 5.4 OxlT monomers/proteoliposome. We conclude that OxlT is a functional monomer in the membrane and in detergent/lipid micelles.  相似文献   

14.
The transport of nitrate into prokaryotic and eukaryotic cells, of considerable interest to agriculture, ecology, and human health, is carried out by members of a distinct cluster of proteins within the major facilitator superfamily. To obtain structure/function information on this important class of nitrate permeases, a collection of chemically induced mutations in the nrtA gene encoding a 12-transmembrane domain, high-affinity nitrate transporter from the eukaryote Aspergillus nidulans was isolated and characterized. This mutational analysis, coupled with protein alignments, demonstrates the utility of the approach to predicting peptide motifs and individual residues important for the movement of nitrate across the membrane. These include the highly conserved nitrate signature motif (residues 166-173) in Tm 5, the conserved charged residues Arg87 (Tm 2) and Arg368 (Tm 8), as well as the aromatic residue Phe47 (Tm 1), all within transmembrane helices. No mutations were observed in the large central loop (Lp 6/7) between Tm 6 and Tm 7. Finally, the study of a strain with a conversion of Trp481 (Tm 12) to a stop codon suggests that all 12 transmembrane domains and/or the C-terminal tail are required for membrane insertion and/or stability of NrtA.  相似文献   

15.
Organic anion-transporting polypeptides (human, OATPs; other animals, Oatps; gene symbol, SLCO/Slco) form a transport protein superfamily that mediates the translocation of amphipathic substrates across the plasma membrane of animal cells. So far, OATPs/Oatps have been identified in human, rat and mouse tissues. In this study, we used bioinformatic tools to detect new members of the OATP/SLCO superfamily in nonmammalian species and to build models for the three-dimensional structure of OATPs/Oatps. New OATP/SLCO superfamily members, some of which form distinct novel families, were identified in chicken, zebrafish, frog, fruit fly and worm species. The lack of OATP/SLCO superfamily members in plants, yeast and bacteria suggests the emergence of an ancient Oatp protein in an early ancestor of the animal kingdom. Structural models were generated for the representative members OATP1B3 and OATP2B1 based on the known structures of the major facilitator superfamily of transport proteins. A model was also built for the large extracellular region between transmembrane helices 9 and 10, following the identification of a novel homology with the Kazal-type serine protease inhibitors. Along with the electrostatic potential and the conservation of key amino acid residues, we propose a common transport mechanism for all OATPs/Oatps, whereby substrates are translocated through a central, positively charged pore in a rocker-switch type of mechanism. Several amino acid residues were identified that may play crucial roles in the proposed transport mechanism.  相似文献   

16.
The L-arginine/agmatine antiporter AdiC is a key component of the arginine-dependent extreme acid resistance system of Escherichia coli. Phylogenetic analysis indicated that AdiC belongs to the amino acid/polyamine/organocation (APC) transporter superfamily having sequence identities of 15-17% to eukaryotic and human APC transporters. For functional and structural characterization, we cloned, overexpressed, and purified wild-type AdiC and the point mutant AdiC-W293L, which is unable to bind and consequently transport L-arginine. Purified detergent-solubilized AdiC particles were dimeric. Reconstitution experiments yielded two-dimensional crystals of AdiC-W293L diffracting beyond 6 angstroms resolution from which we determined the projection structure at 6.5 angstroms resolution. The projection map showed 10-12 density peaks per monomer and suggested mainly tilted helices with the exception of one distinct perpendicular membrane spanning alpha-helix. Comparison of AdiC-W293L with the projection map of the oxalate/formate antiporter from Oxalobacter formigenes, a member from the major facilitator superfamily, indicated different structures. Thus, two-dimensional crystals of AdiC-W293L yielded the first detailed view of a transport protein from the APC superfamily at sub-nanometer resolution.  相似文献   

17.
Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus. The proteins encoded by the ABCC6 and ABCC12 genes are not known to transport drugs and are therefore referred to as ABCC6 and ABCC12 (rather than MRP6 and MRP9) respectively. A large number of molecules are transported across the plasma membrane by the MRPs. Many are organic anions derived from exogenous sources such as conjugated drug metabolites. Others are endogenous metabolites such as the cysteinyl leukotrienes and prostaglandins which have important signalling functions in the cell. Some MRPs share a degree of overlap in substrate specificity (at least in vitro), but differences in transport kinetics are often substantial. In some cases, the in vivo substrates for some MRPs have been discovered aided by studies in gene-knockout mice. However, the molecules that are transported in vivo by others, including MRP5, MRP7, ABCC6 and ABCC12, still remain unknown. Important differences in the tissue distribution of the MRPs and their membrane localization (apical in contrast with basolateral) in polarized cells also exist. Together, these differences are responsible for the unique pharmacological and physiological functions of each of the nine ABCC transporters known as the MRPs.  相似文献   

18.
The transporter MsbA is a kind of multidrug resistance ATP‐binding cassette transporter that can transport lipid A, lipopolysaccharides, and some amphipathic drugs from the cytoplasmic to the periplasmic side of the inner membrane. In this work, we explored the allosteric pathway of MsbA from the inward‐ to outward‐facing states during the substrate transport process with the adaptive anisotropic network model. The results suggest that the allosteric transitions proceed in a coupled way. The large‐scale closing motions of the nucleotide‐binding domains occur first, accompanied with a twisting motion at the same time, which becomes more obvious in middle and later stages, especially for the later. This twisting motion plays an important role for the rearrangement of transmembrane helices and the opening of transmembrane domains on the periplasmic side that mainly take place in middle and later stages respectively. The topological structure plays an important role in the motion correlations above. The conformational changes of nucleotide‐binding domains are propagated to the transmembrane domains via the intracellular helices IH1 and IH2. Additionally, the movement of the transmembrane domains proceeds in a nonrigid body, and the two monomers move in a symmetrical way, which is consistent with the symmetrical structure of MsbA. These results are helpful for understanding the transport mechanism of the ATP‐binding cassette exporters. Proteins 2015; 83:1643–1653. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated.  相似文献   

20.
Weng J  Ma J  Fan K  Wang W 《Biophysical journal》2008,94(2):612-621
ATP-binding cassette transporter BtuCD mediating vitamin B12 uptake in Escherichia coli couples the energy of ATP hydrolysis to the translocation of vitamin B12 across the membrane into the cell. Elastic normal mode analysis of BtuCD demonstrates that the simultaneous substrate trapping at periplasmic cavity and ATP binding at the ATP-binding cassette (BtuD) dimer proceeds readily along the lowest energy pathway. The transport power stroke is attributed to ATP-hydrolysis-induced opening of the nucleotide-binding domain dimer, which is coupled to conformational rearrangement of transmembrane domain (BtuC) helices leading to the closing at the periplasmic side and opening at the cytoplasmic gate. Simultaneous hydrolysis of two ATP is supported by the fact that antisymmetric movement of BtuD dimer implying alternating hydrolysis cannot induce effective conformational change of the translocation pathway. A plausible mechanism of translocation cycle is proposed in which the possible effect of the association of periplasmic binding protein BtuF to the transporter is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号