首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine has been hypothesized as a contributing factor for the selective degeneration of dopaminergic neurons in Parkinson's disease. However, the cytotoxic mechanisms of dopamine and its metabolites remain poorly understood. Using a stable aromatic amino acid decarboxylase (AADC) expressing a fibroblast cell line, we previously demonstrated a novel, non-oxidative cytotoxicity of intracellular dopamine. In this study, we further investigate the roles of dopamine metabolism and disposition proteins against intracellular dopamine cytotoxicity by co-expressing these factors in AADC-expressing cells. Our results indicate that overexpression of the vesicular monoamine transporter and monoamine oxidase A-induced protection against intracellular dopamine toxicity, and conversely that pharmacological inhibition of these pathways potentiated L-DOPA toxicity in catecholaminergic PC12 cells. Macrophage migration inhibitory factor and glutathione S-transferase (GST), factors that have recently been shown to be involved in dopamine metabolism, also exhibited a strong protective role against intracellular dopamine cytotoxicity. Our results support a potential role for non-oxidative cytoplasmic dopamine toxicity, and imply that disruption in dopamine disposition and/or metabolism could underlie the progressive degeneration of dopaminergic neurons in Parkinson's disease.  相似文献   

2.
Alpha-synuclein is a presynaptic protein strongly implicated in Parkinson's disease (PD). Because dopamine neurons are invariably compromised during pathogenesis in PD, we have been exploring the functions of alpha-synuclein with particular relevance to dopaminergic neuronal cells. We previously discovered reduced tyrosine hydroxylase (TH) activity and minimal dopamine synthesis in stably-transfected MN9D cells overexpressing either wild-type or A53T mutant (alanine to threonine at amino acid 53) alpha-synuclein. TH, the rate-limiting enzyme in dopamine synthesis, converts tyrosine to l-dihydroxyphenylalanine (L-DOPA), which is then converted to dopamine by the enzyme, aromatic amino acid decarboxylase (AADC). We confirmed an interaction between alpha-synuclein and AADC in striatum. We then sought to determine whether wild-type or A53T mutant alpha-synuclein might have affected AADC activity in dopaminergic cells. Using HPLC with electrochemical detection, we measured dopamine and related catechols after L-DOPA treatments to bypass the TH step. We discovered that while alpha-synuclein did not reduce AADC protein levels, it significantly reduced AADC activity and phosphorylation in our cells. These novel findings further support a role for alpha-synuclein in dopamine homeostasis and may explain, at least in part, the selective vulnerability of dopamine neurons that occurs in PD.  相似文献   

3.
Progressively blunted response to L-DOPA in Parkinson’s disease (PD) is a critical factor that complicates long-term pharmacotherapy in view of the central importance of this drug in management of the PD-related motor disturbance. This phenomenon is likely due to progressive loss of one of the key enzymes involved in the biosynthetic pathway for dopamine in the basal ganglia: aromatic L-amino acid decarboxylase (AADC). We have developed a gene therapy based on an adeno-associated virus encoding human AADC (AAV2-hAADC) infused into the Parkinsonian striatum. Although no adverse clinical effects of the AAV2-hAADC gene therapy have been observed so far, the ability to more precisely regulate transgene expression or transgene product activity could be an important long-term safety feature. The present study was designed to define pharmacological regulation of the functional activity of AAV2-hAADC transgene product by manipulating L-DOPA and carbidopa (AADC inhibitor) administration in hemi-parkinsonian rats. Thirty days after unilateral striatal infusion of AAV2-hAADC, animals displayed circling behavior and acceleration of dopamine metabolism in the lesioned striatum after administration of a low dose of L-DOPA (5 mg/kg) co-administered with 1.25 mg/kg of carbidopa. This phenomenon was not observed in control AAV2-GFP-treated rats. Withdrawal of carbidopa from a daily L-DOPA regimen decreased the peripheral L-DOPA pool, resulting in almost total loss of L-DOPA-induced behavioral response in AAV2-hAADC rats and a significant decline in striatal dopamine turnover. The serum L-DOPA level correlated with the magnitude of circling behavior in AAV2-hAADC rats. Additionally, AADC activity in homogenates of lesioned striata transduced by AAV2-AADC was 10-fold higher when compared with AAV2-GFP-treated control striata, confirming functional transduction. Our data suggests that the pharmacological regulation of circulating L-DOPA might be effective in the controlling of function of AAV2-hAADC transgene product in PD gene therapy.  相似文献   

4.
Our hypothesis was tested in respect to dopamine synthesis by non-dopaminergic neurons expressing individual complementary enzymes of the DA synthetic pathway. According to the hypothesis, L-dihydroxyphenylalanine (L-DOPA) synthesised in tyrosine hydroxylase(TH)-expressing neurons for conversion to dopamine. The mediobasal hypothalamus of rats on the 21st embryonic day was used as an experimental model. The fetal substantia nigra containing dopaminergic neurons served as control. Dopamine and L-DOPA were measured by high performance liquid chromatography in cell extracts and incubation medium in presence or absence of L-tyrosine. L-tyrosine administration increased L-DOPA synthesis in the mediobasal hypothalamus and substantia nigra. Moreover, L-tyrosine provoked an increase of dopamine synthesis in substantia nigra and a decrease in the mediobasal hypothalamus. This is, probably, due to an L-tyrosine-induced competitive inhibition of the L-DOPA transport to monoenzymatic AADC neurons after its release from the monoenzymatic TH neurons. This study provides a convincing evidence of dopamine synthesis by non-dopaminergic neurons expressing TH or AADC, in cooperation.  相似文献   

5.
6.
Aromatic L-amino acid decarboxylase (AADC) is necessary for conversion of L-DOPA to dopamine. Therefore, AADC gene therapy has been proposed to enhance pharmacological or gene therapies delivering L-DOPA. However, addition of AADC to the grafts of genetically modified cells expressing tyrosine hydroxylase (TH) and GTP cyclohydrolase 1 (GCH1), which produce L-DOPA in parkinsonian rats, resulted in decreased production of L-DOPA and dopamine owing to feedback inhibition of TH by dopamine. End-product feedback inhibition has been shown to be mediated by the regulatory domain of TH, and site-specific mutation of serine 40 makes TH less susceptible to dopamine inhibition. Therefore, we investigated the efficacy of using TH with serine 40 mutated to leucine (mTH) in an ex vivo gene-therapy paradigm. Primary fibroblasts (PF) from Fischer 344 rats were transduced with retrovirus to express mTH or wild-type rat TH cDNA (wtTH). Both cell types were also transduced with GCH1 to provide the obligate TH cofactor, tetrahydrobiopterin. PF transfected with AADC were used as coculture and cografting partners. TH activities and L-DOPA production in culture were comparable between PFwtTHGC and PFmTHGC cells. In cocultures with PFAADC cells, PFmTHGC cells showed significant reduction in the inhibitory effect of dopamine compared with PFwtTHGC cells. In vivo microdialysis measurement showed that cografting PFAADC cells with PFmTHGC cells resulted in smaller decreases in L-DOPA and no reduction in dopamine levels compared with cografts of PFAADC cells with PFwtTHGC cells, which decreased both L-DOPA and dopamine levels. Maintenance of dopamine levels with lower levels of L-DOPA would result in more focused local delivery of dopamine and less potential side-effects arising from L-DOPA diffusion into other structures. These data support the hypothesis that mutation of serine 40 attenuates TH end-product inhibition in vivo and illustrates the importance of careful consideration of biochemical pathways and interactions between multiple genes in gene therapy.  相似文献   

7.
Ozawa K 《Uirusu》2007,57(1):47-55
AAV (adeno-associated virus) vectors are considered to be promising gene-delivery vehicles for gene therapy, because they are derived from non-pathogenic virus, efficiently transduce non-dividing cells, and cause long-term gene expression. Appropriate AAV serotypes are utilized depending on the type of target cells. Among various neurological disorders, Parkinson's disease (PD) is one of the most promising candidates of gene therapy. PD is a progressive neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra. One of the major approaches to gene therapy of PD is the intrastriatal expression of dopamine (DA)-synthesizing enzyme genes. As for the initial step of clinical application, AAV vector-mediated AADC (aromatic L-amino acid decarboxylase; the enzyme converting L-DOPA to DA) gene transfer in combination with oral administration of L-DOPA would be appropriate, since DA production can be regulated by adjusting the dose of L-DOPA. Second, intramuscular injection of AAV vectors is appropriate to protein-supplement gene therapy. Monogenic diseases such as hemophilia and Fabry disease are suitable candidates. Regarding cancer gene therapy, AAV vectors may be utilized to inhibit tumor angiogenesis, metastasis, and invasion. When long-term transgene expression in stem cells is needed, a therapeutic gene should be introduced with a minimal risk of insertional mutagenesis. To this end, site-specific integration into the AAVS1 locus on the chromosome 19 (19q13.4) by using the integration machinery of AAV would be particularly valuable.  相似文献   

8.
U J Kang  W Y Lee  J W Chang 《Human cell》2001,14(1):39-48
This article reviews the mechanism of dopamine delivery in the CNS in order to determine the optimal set of genes for effective gene therapy in Parkinson's disease (PD). Systematic neurobiological investigation of the biochemical steps has revealed that tyrosine hydroxylase (TH), which has been used in earlier studies, functions only when the essential cofactor, tetrahydrobiopterin (BH1) is present. Transduction of the gene for GTP cyclohydrolase I, the first and rate-limiting step in BH1 synthesis, along with the TH gene, generated cells that are capable of producing L-DOPA spontaneously both in vitro and in vivo. When the aromatic L-amino acid decarboxylase (AADC) gene was added as a third gene, in an attempt to increase the conversion of L-DOPA to dopamine, feedback inhibition by the end product, dopamine, on TH activity resulted. To circumvent this problem, we employed a complementary strategy. Gene transfer of the vesicular monoamine transporter was combined with AADC and produced genetically modified cells that can convert L-DOPA to dopamine and store it for gradual release. This approach provided a means to regulate final dopamine delivery by controlling precursor doses and to achieve more sustained delivery of dopamine. Our investigation into determining the genes necessary for optimal dopamine delivery has been facilitated by in vivo biochemical assays using microdialysis. This technique has provided us with a clear and quantitative tool to compare the effects of various genes involved in dopamine synthesis and processing.  相似文献   

9.
Inhibition of catechol-O-methyltransferase (COMT) has protective effects on levodopa (L-DOPA), but not D-DOPA toxicity towards dopamine (DA) neurons in rat primary mesencephalic cultures [Mol. Pharmacol. 57 (2000) 589]. Here, we extend our recent studies to elucidate the mechanisms of these protective effects. Thus, we investigated the effects of all main L-DOPA/DA metabolites on survival of tyrosine hydroxylase immunoreactive (THir) neurons in primary rat mesencephalic cultures. 3-O-Methyldopa, homovanillic acid, dihydroxyphenyl acetate and 3-methoxytyramine had no effects at concentrations up to 300 micro M after 24h, whereas DA was more toxic than L-DOPA with toxicity at concentrations of >or=1 micro M. The coenzyme of COMT, S-adenosyl-L-methionine (SAM), and its demethylated product S-adenosylhomocystein caused no relevant alteration of THir neuron survival or L-DOPA toxicity. In contrast, inhibition of SAM synthesis by selenomethionine showed time- and dose-dependent increase of THir neuron survival, but did not affect L-DOPA toxicity. L-DOPA-induced lipid peroxidation in mesencephalic cultures was not modified by the COMT inhibitor Ro 41-0960 (1 micro M). Increased contamination of the cultures with glial cells attenuated L- and D-DOPA toxicity, but caused significant enhancement of protection by COMT inhibitors against L-DOPA toxicity only. Investigations of L-DOPA uptake in rat striatal cultures using HPLC revealed a significant reduction of extracellular L-DOPA concentrations by Ro 41-0960. Our data confirm that L-DOPA toxicity towards DA neurons is mediated by an autooxidative process, which is attenuated by glial cells. In addition, we demonstrate a second mechanism of L-DOPA toxicity in vitro mediated by a COMT- and glia-dependent pathway, which is blocked by COMT inhibitors, most likely due to enhanced glial uptake of L-DOPA.  相似文献   

10.
A decrease in reduced glutathione levels in dopamine containing nigral cells in Parkinson's disease may result from the formation of cysteinyl-adducts of catecholamines, which in turn exert toxicity on nigral cells. We show that exposure of neurons (CSM 14.1) to 5-S-cysteinyl conjugates of dopamine, L-DOPA, DOPAC or DHMA causes neuronal damage, increases in oxidative DNA base modification and an elevation of caspase-3 activity in cells. Damage to neurons was apparent 12-48 h of post-exposure and there were increases in caspase-3 activity in neurons after 6 h. These changes were paralleled by large increases in pyrimidine and purine base oxidation products, such as 8-OH-guanine suggesting that 5-S-cysteinyl conjugates of catecholamines are capable of diffusing into cells and stimulating the formation of reactive oxygen species (ROS), which may then lead to a mechanism of cell damage involving caspase-3. Indeed, intracellular ROS were observed to rise sharply on exposure to the conjugates. These results suggest one mechanism by which oxidative stress may occur in the substantia nigra in Parkinson's disease.  相似文献   

11.
Riluzole is neuroprotective in patients with amyotrophic lateral sclerosis and may also protect dopamine (DA) neurons in Parkinson's disease. We examined the neuroprotective potential of riluzole on DA neurons using primary rat mesencephalic cultures and human dopaminergic neuroblastoma SH-SY5Y cells. Riluzole (up to 10 microM:) alone affected neither the survival of DA neurons in primary cultures nor the growth of SH-SY5Y cells after up to 72 h. Riluzole (1-10 microM:) dose-dependently reduced DA cell loss caused by exposure to MPP(+) in both types of cultures. These protective effects were accompanied by a dose-dependent decrease of intracellular ATP depletion caused by MPP(+) (30-300 microM:) in SH-SY5Y cells without affecting intracellular net NADH content, suggesting a reduction of cellular ATP consumption rather than normalization of mitochondrial ATP production. Riluzole (1-10 microM:) also attenuated oxidative injury in both cell types induced by exposure to L-DOPA and 6-hydroxydopamine, respectively. Consistent with its antioxidative effects, riluzole reduced lipid peroxidation induced by Fe(3+) and L-DOPA in primary mesencephalic cultures. Riluzole (10 microM) did not alter high-affinity uptake of either DA or MPP(+). However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:). These data demonstrate that riluzole has protective effects on DA neurons in vitro against neuronal injuries induced by (a) impairment of cellular energy metabolism and/or (b) oxidative stress. These results provide further impetus to explore the neuroprotective potential of riluzole in Parkinson's disease.  相似文献   

12.
Sumary 1. We investigate here for the first time in primate brain the combinatorial expression of the three major functionally relevant proteins for catecholaminergic neurotransmission tyrosine hydroxylase (TH), aromatic acid acid decarboxylase (AADC), and the brain-specific isoform of the vesicular monoamine transporter, VMAT2, using highly specific antibodies and immunofluorescence with confocal microscopy to visualize combinatorial expression of these proteins.2. In addition to classical TH, AADC, and VMAT2-copositive catecholaminergic neurons, two unique kinds of TH-positive neurons were identified based on co-expression of AADC and VMAT2.3. TH and AADC co-positive, but VMAT2-negative neurons, are termed “nonexocytotic catecholaminergic TH neurons.” These were found in striatum, olfactory bulb, cerebral cortex, area postrema, nucleus tractus solitarius, and in the dorsal motor nucleus of the vagus.4. TH-positive neurons expressing neither AADC nor VMAT2 are termed “dopaergic TH neurons.” We identified these neurons in supraoptic, paraventricular and periventricular hypothalamic nuclei, thalamic paraventicular nucleus, habenula, parabrachial nucleus, cerebral cortex and spinal cord. We were unable to identify any dopaergic (TH-positive, AADC-negative) neurons that expressed VMAT2, suggesting that regulatory mechanisms exist for shutting off VMAT2 expression in neurons that fail to biosynthesize its substrates.5. In several cases, the corresponding TH phenotypes were identified in the adult rat, suggesting that this rodent is an appropriate experimental model for further investigation of these TH-positive neuronal cell groups in the adult central nervous system. Thus, no examples of TH and VMAT2 co-positive neurons lacking AADC expression were found in rodent adult nervous system.6. In conclusion, the adult mammalian nervous system contains in addition to classical catecholaminergic neurons, cells that can synthesize dopamine, but cannot transport and store it in synaptic vesicles, and neurons that can synthesize only L-dopa and lack VMAT2 expression. The presence of these additional populations of TH-positive neurons in the adult primate CNS has implications for functional catecholamine neurotransmission, its derangement in disease and drug abuse, and its rescue by gene therapeutic maneuvers in neurodegenerative diseases such as Parkinson's disease.  相似文献   

13.
Su Y  Duan CL  Zhao CL  Zhao HY  Xu QY  Yang H 《生理学报》2003,55(5):583-588
由于在帕金森病中合成多巴胺所需的酪氨酸羟化酶(tyrosine hydroxylase,TH)和左旋芳香族氨基酸脱羧酶(aromatic L-amino acid decarboxylase,AADC)活性明显降低,所以补充多巴胺合成酶成为基因治疗帕金森病研究的主要手段。我们分别构建了重组逆转录病毒载体pLHCX/TH及pLNCX2/AADC,通过脂质体介导将带有目的基因的载体分别转到包装细胞PA317中,经筛选得到产病毒的细胞PA317/TH和PA317/AADC,采用免疫组化、原位杂交方法检测目的基因表达;细胞经裂解后进行的酶促反应产物多巴胺以高压液相电化学方法检测证明所克隆的T‘H及AADC基因具有功能活性;这两种基因工程改造细胞可以完成酶促动力学的功能,使L-dopa及多巴胺产生明显增加。本研究为用TH和AADC双基因对帕金森病进行基因治疗提供了一定的依据。  相似文献   

14.
Abstract: The role of the glutathione system in protecting dopamine neurons from a mild impairment of energy metabolism imposed by the competitive succinate dehydrogenase inhibitor, malonate, was investigated in vitro and in vivo. Treatment of mesencephalic cultures with 10 µ M buthionine sulfoxamine for 24 h reduced total glutathione levels in the cultures by 68%. Reduction of cellular glutathione per se was not toxic to the dopamine population, but potentiated toxicity when the cultures were exposed to malonate. In contrast, transgenic mice overexpressing glutathione peroxidase (hGPE) that received an intrastriatal infusion of malonate (3 µmol) into the left side had significantly less loss of striatal dopamine than their hGPE-negative littermates when assayed 1 week following infusion. These studies demonstrate that manipulation of the glutathione system influences susceptibility of dopamine neurons to damage due to energy impairment. The findings may provide insight into the loss of dopamine neurons in Parkinson's disease in which defects in both energy metabolism and the glutathione system have been identified.  相似文献   

15.
Parkinson's disease (PD) is a neurodegenerative disorder with motor symptoms caused by the loss of dopaminergic (DA) cells and consequently dopamine release in the nigrostriatal system. In vivo and in vitro 6-hydroxydopamine (6-OHDA) PD models are widely used to study the effect of striatal dopamine depletion as well as novel neuroprotective or restorative therapeutic strategies for PD. In the present study, we investigated in vitro the toxicity of 6-OHDA on DA neurons derived from E14 rat ventral mesencephalon (VM) and the neuroprotective efficiency of erythropoietin (Epo) on VM-derived cell cultures against 6-OHDA toxicity. Using E14 VM-derived DA-rich primary cultures, we could demonstrate that 6-OHDA toxicity works in a time-and concentration-dependent way, and leads to cell death not only in DA cells but also in non-DA cells in direct relation to concentration and incubation times. In addition, we found that 6-OHDA toxicity induces caspase-3 activation and an increment of intracellular reactive oxygen species (ROS) in VM-derived cultures. When 6-OHDA-treated VMs were cultured in the presence of the anti-apoptotic protein erythropoietin (Epo), the total neuronal population, including the DA neurons, was protected. However, untreated VM cultures exposed to Epo showed an increase in the total neuronal population, but not an additional increase in DA neuron cell number.These findings suggest that 6-OHDA toxicity is time and concentration-dependent and does not exclusively affect DA neurons. In high concentration and long incubation times, 6-OHDA influences the survival of other neuronal and non-neuronal cell populations derived from the VM cultures. 6-OHDA toxicity induces caspase-3 activation, indicating cell death via the apoptotic pathway which could be restricted or even prevented by pre-exposure to Epo, known to interact via the apoptotic pathway. Our results support and expand on previous findings showing that Epo is an interesting candidate molecule to mediate neuroprotective effects on DA neurons in PD. Furthermore, it could be used in promoting the survival of DA neurons after transplantation in clinical trials.  相似文献   

16.
We have recently shown that the hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) is neuroprotective in rodent stroke models, and that this action appears to be mediated via a neuronal G-CSF receptor. Here, we report that the G-CSF receptor is expressed in rodent dopaminergic substantia nigra neurons, suggesting that G-CSF might be neuroprotective for dopaminergic neurons and a candidate molecule for the treatment of Parkinson's disease. Thus, we investigated protective effects of G-CSF in 1-methyl-4-phenylpyridinium (MPP+)-challenged PC12 cells and primary neuronal midbrain cultures, as well as in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. Substantial protection was found against MPP+-induced dopaminergic cell death in vitro. Moreover, subcutaneous application of G-CSF at a dose of 40 microg/Kg body weight daily over 13 days rescued dopaminergic substantia nigra neurons from MPTP-induced death in aged mice, as shown by quantification of tyrosine hydroxylase-positive substantia nigra cells. Using HPLC, a corresponding reduction in striatal dopamine depletion after MPTP application was observed in G-CSF-treated mice. Thus our data suggest that G-CSF is a novel therapeutic opportunity for the treatment of Parkinson's disease, because it is well-tolerated and already approved for the treatment of neutropenic conditions in humans.  相似文献   

17.
An in vivo voltammetric technique was used to determine whether striatal nondopaminergic neurons take up and decarboxylate exogenous L-3,4-dihydroxyphenylalanine (L-DOPA) and release it as dopamine. After the striatal serotonergic neurons of the rat had been destroyed by intraventricular injection of 5,7-dihydroxytryptamine, L-DOPA was administered intraperitoneally. It was found that changes in the dopamine concentration in the striatal extracellular fluid of the rat were the same as those in the nonlesioned rat. L-DOPA was also administered to the rat after the striatal perikarya had been destroyed by the intrastriatal injection of kainate. The striatal dopamine concentrations of the lesioned rat changed in parallel with 5,7-dihydroxytryptamine-lesioned rats, as well as the nonlesioned rats. Moreover, when normal rats were administered L-DOPA, the dopamine concentration was not increased in the cerebellum, where dopamine neurons do not exist. From these observations, it is concluded that exogenous L-DOPA is taken up, decarboxylated to dopamine, and released only in the striatal dopamine neurons.  相似文献   

18.
Administration of L-DOPA is commonly used to treat Parkinson's disease, yet controversy continues as to whether the dopamine arising from it aggravates neuronal loss. Several authors have reported cytotoxic effects of L-DOPA and dopamine on cultured cells, but others have not. In this report using the rat pheochromocytoma cell line PC12 and the M14 human melanoma cell line we show that dopamine-mediated cell death is not specific for neuronal cells. Moreover, our data show that both L-DOPA and dopamine interact with commonly used cell culture media, undergoing oxidation to generate hydrogen peroxide and dopamine semiquinones/quinones. Catalase and reduced glutathione could protect against cytotoxicity. These results suggest that caution needs to be employed when using cell culture studies to predict effects of L-DOPA and/or dopamine in vivo because of the extracellular generation of reactive species in the culture media.  相似文献   

19.
20.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号