首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Debaryomyces hansenii is an osmotolerant and halotolerant yeast of increasing interest for fundamental and applied research. In this work, we have performed a first study on the effect of oxidative stress on the performance of this yeast. We have used Saccharomyces cerevisiae as a well-known reference yeast. We show that D. hansenii is much more susceptible than S. cerevisiae to cadmium chloride, hydrogen peroxide or 1,4-dithiothreitol. These substances induced the formation of reactive oxygen species (ROS) in both yeasts, the amounts measured being significantly higher in the case of D. hansenii . We also show that NaCl exerted a protective effect against oxidative stress in Debaryomyces , but that this was not the case in Saccharomyces because sodium protected that yeast only when toxicity was induced with cadmium. On the basis of the present results, we raised the hypothesis that the sensitivity to oxidative stress in D. hansenii is related to the high amounts of ROS formed in that yeast and that observations such as low glutathione amounts, low basal superoxide dismutase and peroxidase activities, decrease in ATP levels produced in the presence of ROS inducers and high cadmium accumulation are determinants directly or indirectly involved in the sensitivity process.  相似文献   

2.
Pulse field gel electrophoresis karyotypes of 41 strains of the genus Debaryomyces, including 35 strains confirmed as D. hansenii species by D1/D2 ribosomal DNA sequence analysis, were performed. Electrophoretic karyotypes of the 41 strains exhibited 4 to 10 chromosomal bands ranging between 0.7 Mb and 4.2 Mb. Among D. hansenii species, the patterns of strains obtained from the CBS collection and cheese isolates differed strongly from D. hansenii var. hansenii CBS767T. Both D. hansenii var. hansenii and D. hansenii var. fabryii showed chromosome length polymorphism. Electrophoretic karyotypes of the D. hansenii strains were analyzed by Southern hybridization with various species-specific probes isolated from D. hansenii var. hansenii CBS767T. Repeated sequences including the F01pro, M18pro, the Ty1-copia retrotransposon Tdh5 and hypothetical telomeric sequence hybridized to several chromosomal bands, while a D1/D2 probe derived from the large ribosomal sub-unit hybridized only to the largest chromosome. Unique probes such as those hybridizing to actin ACT1, glycerol-3-phosphate dehydrogenase GPD1 and β-glucosidase LAC4 encoding genes were assigned to specific chromosomal bands of D. hansenii var. hansenii CBS767T. These probes failed to hybridize to D. hansenii var. fabryii strongly suggesting that strains of this variety actually represent a different taxon. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Pulse field gel electrophoresis karyotypes of 41 strains of the genus Debaryomyces, including 35 strains confirmed as D. hansenii species by D1/D2 ribosomal DNA sequence analysis, were performed. Electrophoretic karyotypes of the 41 strains exhibited 4 to 10 chromosomal bands ranging between 0.7 Mb and 4.2 Mb. Among D. hansenii species, the patterns of strains obtained from the CBS collection and cheese isolates differed strongly from D. hansenii var. hansenii CBS767T. Both D. hansenii var. hansenii and D. hansenii var. fabryii showed chromosome length polymorphism. Electrophoretic karyotypes of the D. hansenii strains were analyzed by Southern hybridization with various species-specific probes isolated from D. hansenii var. hansenii CBS767T. Repeated sequences including the F01pro, M18pro, the Ty1-copia retrotransposon Tdh5 and hypothetical telomeric sequence hybridized to several chromosomal bands, while a D1/D2 probe derived from the large ribosomal sub-unit hybridized only to the largest chromosome. Unique probes such as those hybridizing to actin ACT1, glycerol-3-phosphate dehydrogenase GPD1 and β-glucosidase LAC4 encoding genes were assigned to specific chromosomal bands of D. hansenii var. hansenii CBS767T. These probes failed to hybridize to D. hansenii var. fabryii strongly suggesting that strains of this variety actually represent a different taxon. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A salt-tolerant yeast Debaryomyces hansenii IFO 10939, which is able to grow at pH 10.0, was isolated and characterized. IFO 10939 had the ability of maintaining intracellular pH. The in vivo activation of plasma membrane ATPase was observed in cells grown at pH 6.2 during conditioning in buffer at pH 9.0. Alkalification of growth medium exhibited a significant increase in acetate and propionate production. The results suggested that the regulation of intracellular pH was involved in plasma membrane ATPase pumping protons out of the cells and weak acid formation for the source of the protons in cells growing at high pH. Received: 4 December 2001 / Accepted: 24 January 2002  相似文献   

5.
A glycerol-nonutilizing mutant of the salt-tolerant yeast Debaryomyces hansenii was isolated. When subjected to salt stress the mutant produced glycerol, and the internal level of glycerol increased linearly in proportion to increases of external salinity as in the wild-type strain. However, at increased salinity the mutant showed a more pronounced decrease of growth rate and growth yield and lost more glycerol to the surrounding medium than did the wild type. Uptake experiments showed glycerol to be accumulated against a strong concentration gradient, and both strains displayed similar kinetic parameters for the uptake of glycerol. An examination of enzyme activities of the glycerol metabolism revealed that the apparent Km of the sn-glycerol 3-phosphate dehydrogenase (EC 1.1.99.5) was increased 330-fold for sn-glycerol 3-phosphate in the mutant. Based on the findings, a scheme for the pathways of glycerol metabolism is suggested.  相似文献   

6.
Debaryomyces hansenii is one of the most halotolerant species of yeast, and the genome sequence of D. hansenii strain CBS767 is already available. Here we report the 11.46-Mb draft genome of D. hansenii strain MTCC 234, which is even more halotolerant than strain CBS767. Comparative analysis of these sequences would definitely provide further insight into the halotolerance of this yeast.  相似文献   

7.
Candida famata NCYC 576 cells aggregated throughout growth in YEPD. Aggregates were dispersed by Pronase E, EDTA or specific sugars. EDTA-dispersed cells reaggregated after calcium ion addition. Unlike Saccharomyces cerevisiae, C. famata cells lost the ability to flocculate with repeated EDTA washings. These cells regained flocculation when resuspended in the first washing solution after calcium addition. Candida famata NCYC 576 aggregation is consistent with lectin-mediated yeast flocculation, where lectins are not surface-anchored, as in S. cerevisiae but attached to cells only by lectin action.  相似文献   

8.
The proteome of the highly NaCl-tolerant yeast Debaryomyces hansenii was investigated by two-dimensional polyacrylamide gel electrophoresis (2D PAGE), and 47 protein spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) followed by mass spectrometry (MS). The influence of NaCl on the D. hansenii proteome was investigated during the first 3 h of NaCl exposure. The rate of protein synthesis was strongly decreased by exposure to 8% and 12% (w/v) NaCl, as the average incorporation rates of l-[(35)S]methionine within the first 30 min after addition of NaCl were only 7% and 4% of the rate in medium without NaCl. In addition, the number of protein spots detected on 2D gels prepared from cells exposed to 8% and 12% (w/v) NaCl exceeded less than 28% of the number of protein spots detected on 2D gels prepared from cells without added NaCl. Several proteins were identified as being either induced or repressed upon NaCl exposure. The induced proteins were enzymes involved in glycerol synthesis/dissimilation and the upper part of glycolysis, whereas the repressed proteins were enzymes involved in the lower part of glycolysis, the route to the Krebs cycle, and the synthesis of amino acids. Furthermore, one heat shock protein (Ssa1p) was induced, whereas others (Ssb2p and Hsp60p) were repressed.  相似文献   

9.
The comparative analysis of growth, intracellular content of Na+ and K+, and the production of trehalose in the halophilic Debaryomyces hansenii and Saccharomyces cerevisiae were determined under saline stress. The yeast species were studied based on their ability to grow in the absence or presence of 0.6 or 1.0 M NaCl and KCl. D. hansenii strains grew better and accumulated more Na+ than S. cerevisiae under saline stress (0.6 and 1.0 M of NaCl), compared to S. cerevisiae strains under similar conditions. By two methods, we found that D. hansenii showed a higher production of trehalose, compared to S. cerevisiae; S. cerevisiae active dry yeast contained more trehalose than a regular commercial strain (S. cerevisiae La Azteca) under all conditions, except when the cells were grown in the presence of 1.0 M NaCl. In our experiments, it was found that D. hansenii accumulates more glycerol than trehalose under saline stress (2.0 and 3.0 M salts). However, under moderate NaCl stress, the cells accumulated more trehalose than glycerol. We suggest that the elevated production of trehalose in D. hansenii plays a role as reserve carbohydrate, as reported for other microorganisms.  相似文献   

10.
The yeasts Candida mogii 2 and Debaryomyces hansenii 8 isolated from salted fish spawn in the process of its storage were found to be capable of growth in 4 M KCl, 3 M MgCl2, 2.5 M NaCl, 1.5 BaCl2 and 1 M CaCl2. The activity of water (aw) in these solutions varied from 0.983 to 0.719; the maximum osmotic pressure was 380 atm. The cultures grew also in a 3 M sucrose solution, at low concentrations of osmotically active substances and without them. Therefore, they can be regarded as osmotolerant microorganisms. The osmotolerance of the cultures decreased with temperature of solutions. The absence of growth or weak growth in solutions of certain other chlorides should be attributed to toxicity of cations.  相似文献   

11.
In this work, we performed for the first time a proteomic approach to the processes induced by long-term potassium starvation in the halotolerant yeast Debaryomyces hansenii. The proteomic profile under this ionic stress conditions shows that important changes in gene expression take place as an adaptive response. We found a significant protein expression repression as well as metabolic changes such as the inhibition of the upper part of the glycolysis, the amino acid synthesis, and the Krebs cycle. On the other hand, genes related to stress responses, protein degradation, and sterols synthesis were upregulated in response to potassium deprivation. The findings in this study provide important information about how this particular yeast copes with ionic stress at molecular levels, which might further enrich the global understanding of salt tolerance processes in eukaryal systems and moreover highlighting the importance of the 'omics' approaches as a complement to the classical physiological studies.  相似文献   

12.
Summary Sodium chloride decreased the growth yield with respect to glucose by 60% (at 17% NaCl, w/v), and narrowed the temperature span of growth of Debaryomyces hansenii from 6.8–40.5°C without the salt to 13.2–34.5°C with 16% NaCl. The thermokinetic profile (conjunct display of the Arrhenius plots of the specific rates of growth and thermal death) was dissociative either without or with NaCl, the minimum temperature of thermal death increasing from 42 to 45°C with 10% NaCl.  相似文献   

13.
Debaryomyces hansenii is a yeast species that is known for its halotolerance. This organism has seldom been mentioned as a pentose consumer. In the present work, a strain of this species was investigated with respect to the utilization of pentoses and hexoses in mixtures and as single carbon sources. Growth parameters were calculated for batch aerobic cultures containing pentoses, hexoses, and mixtures of both types of sugars. Growth on pentoses was slower than growth on hexoses, but the values obtained for biomass yields were very similar with the two types of sugars. Furthermore, when mixtures of two sugars were used, a preference for one carbon source did not inhibit consumption of the other. Glucose and xylose were transported by cells grown on glucose via a specific low-affinity facilitated diffusion system. Cells derepressed by growth on xylose had two distinct high-affinity transport systems for glucose and xylose. The sensitivity of labeled glucose and xylose transport to dissipation of the transmembrane proton gradient by the protonophore carbonyl cyanide m-chlorophenylhydrazone allowed us to consider these transport systems as proton symports, although the cells displayed sugar-associated proton uptake exclusively in the presence of NaCl or KCl. When the V(max) values of transport systems for glucose and xylose were compared with glucose- and xylose-specific consumption rates during growth on either sugar, it appeared that transport did not limit the growth rate.  相似文献   

14.
The intracellular solute composition of the salt-tolerant yeast Debaryomyces hansenii was studied in glucose-limited chemostat cultures at different concentrations of NaCl (4 mM, 0.68 M, and 1.35 M). A strong positive correlation between the total intracellular polyol concentration (glycerol and arabinitol) and medium salinity was demonstrated. The intracellular polyol concentration was sufficient to balance about 75% of the osmotic pressure of the medium in cultures with 0.68 and 1.35 M NaCl. The intracellular concentration of K+ and Na+, which at low external salinity gave a considerable contribution to the intracellular water potential, was only slightly enhanced with raised medium salinity. However, the ratio of intracellular K+ to Na+ decreased; but this decrease was less drastic in the cells than in the surrounding medium, i.e., the cells were able to select for K+ in favor of Na+. The turgor pressure, which was estimated on the basis of intracellular solute concentrations, was 2,200 kPa in cultures with 4 mM NaCl and decreased when the external salinity was raised, resulting in a value of about 500 kPa in cultures with 1.35 M NaCl. The maintenance of a positive turgor pressure at high salinity was mainly due to an increased production and accumulation of glycerol.  相似文献   

15.
16.
Two genes encoding Na(+)-ATPases from Debaryomyces hansenii were cloned and sequenced. The genes, designated ENA1 from D. hansenii (DhENA1) and DhENA2, exhibited high homology with the corresponding genes from Schwanniomyces occidentalis. DhENA1 was expressed in the presence of high Na(+) concentrations, while the expression of DhENA2 also required high pH. A mutant of Saccharomyces cerevisiae lacking the Na(+) efflux systems and sensitive to Na(+), when transformed with DhENA1 or DhENA2, recovered Na(+) tolerance and also the ability to extrude Na(+).  相似文献   

17.
The yeast Debaryomyces hansenii is usually found in salty environments such as the sea and salted food. It is capable of accumulating sodium without being intoxicated even when potassium is present at low concentration in the environment. In addition, sodium improves growth and protects D. hansenii in the presence of additional stress factors such as high temperature and extreme pH. An array of advantageous factors, as compared with Saccharomyces cerevisiae, is putatively involved in the increased halotolerance of D. hansenii: glycerol, the main compatible solute, is kept inside the cell by an active glycerol-Na+ symporter; potassium uptake is not inhibited by sodium; sodium protein targets in D. hansenii seem to be more resistant. The whole genome of D. hansenii has been sequenced and is now available at http://cbi.labri.fr/Genolevures/ and, so far, no genes specifically responsible for the halotolerant behaviour of D. hansenii have been found.  相似文献   

18.
We developed a rapid and sensitive identification method for the halotolerant yeast Debaryomyces hansenii, based on the hybridization of species-specific sequences. These sequences were first identified in a survey of D. hansenii strains by random amplification of polymorphic DNA (RAPD) as giving conserved bands in all isolates tested. Two such conserved RAPD products, termed F01pro and M18pro, were cloned from the type strain CBS 767. The specificity of these probes was assessed by hybridizing them to DNA from various species of yeasts commonly found in cheese. F01pro and M18pro hybridized to the DNA of all D. hansenii var. hansenii tested, but not to DNA of other yeast species including the closely related strain of D. hansenii var. fabryii CBS 789. Hybridization patterns of F01pro and M18pro on digested genomic DNA of D. hansenii indicated that the sequences were repeated in the genome of all D. hansenii var. hansenii tested, and gave distinct polymorphic patterns. The single F01pro probe generated 11 different profiles for 24 strains by restriction fragment length polymorphism, using one restriction enzyme. F01pro represents a new type of repeated element found in fungi, useful for both identification and typing of D. hansenii and, together with M18pro, simplifies the study of this species in complex flora.  相似文献   

19.
The yeast Debaryomyces hansenii was investigated for its production of alcohol-based quorum sensing (QS) molecules including the aromatic alcohols phenylethanol, tyrosol, tryptophol and the aliphatic alcohol farnesol. Debaryomyces hansenii produced phenylethanol and tyrosol, which were primarily detected from the end of exponential phase indicating that they are potential QS molecules in D.?hansenii as previously shown for other yeast species. Yields of phenylethanol and tyrosol produced by D.?hansenii were, however, lower than those produced by Candida albicans and Saccharomyces cerevisiae and varied with growth conditions such as the availability of aromatic amino acids, ammonium sulphate, NaCl, pH and temperature. Tryptophol was only produced in the presence of tryptophane, whereas farnesol in general was not detectable. Especially, the type strain of D.?hansenii (CBS767) had good adhesion and sliding motility abilities, which seemed to be related to a higher hydrophobicity of the cell surface of D.?hansenii (CBS767) rather than the ability to form pseudomycelium. Addition of phenylethanol, tyrosol, tryptophol and farnesol was found to influence both adhesion and sliding motility of D.?hansenii.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号