首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bak is a pro-apoptotic member of the Bcl-2 family that is activated by apoptotic stimulation: its activation is characterized by conformational changes such as exposure of the N terminus and oligomerization. In death receptor-mediated apoptosis, the activation of Bak depends on activation of caspase-8. However, we found that exposure of the N terminus of Bak (but not oligomerization) can occur in the absence of active caspase-8. Although exposure of the N terminus of Bak without oligomerization is not sufficient to release cytochrome c from the mitochondria and commit cells to apoptosis, this change sensitizes the mitochondria to apoptotic signals (including Bid) and thus sensitizes cells to apoptotic death. Fas-induced, caspase-8-independent exposure of the N terminus of Bak is blocked by staurosporine, a pan protein kinase inhibitor. These results suggest that Fas stimulation not only activates caspase-8, but also a distinct signaling pathway involving protein kinase(s) to induce exposure of the N terminus of Bak.  相似文献   

2.
In contrast to positive signaling leading to proliferation, the mechanisms involved in negative signaling culminating in apoptosis after B cell Ag receptor (BCR) ligation have received little study. We find that apoptosis induced by BCR cross-linking on EBV-negative mature and immature human B cell lines involves the following sequential, required events: a cyclosporin A-inhibitable, likely calcineurin-mediated step; and activation of caspase-2, -3, and -9. Caspase-2 is activated early and plays a major role in the apoptotic pathway, while caspase-9 is activated later in the apoptotic pathway and most likely functions to amplify the apoptotic signal. Caspase-8 and -1, which are activated by ligation of the CD95 and TNF-R1 death receptors, are not involved. Apoptosis induced by BCR ligation thus proceeds via a previously unreported intracellular signaling pathway.  相似文献   

3.
Activation of 'initiator' (or 'apical') caspases-2, -8 or -9 (refs 1-3) is crucial for induction of apoptosis. These caspases function to activate executioner caspapses that, in turn, orchestrate apoptotic cell death. Here, we show that a cell-permeable, biotinylated pan-caspase inhibitor (bVAD-fmk) both inhibited and 'trapped' the apical caspase activated when apoptosis was triggered. As expected, only caspase-8 was trapped in response to ligation of death receptors, whereas only caspase-9 was trapped in response to a variety of other apoptosis-inducing agents. Caspase-2 was exclusively activated in heat shock-induced apoptosis. This activation of caspase-2 was also observed in cells protected from heat-shock-induced apoptosis by Bcl-2 or Bcl-xL. Reduced sensitivity to heat-shock-induced death was observed in caspase-2(-/-) cells. Furthermore, cells lacking the adapter molecule RAIDD failed to activate caspase-2 after heat shock treatment and showed resistance to apoptosis in this setting. This approach unambiguously identifies the apical caspase activated in response to apoptotic stimuli, and establishes caspase-2 as a proximal mediator of heat shock-induced apoptosis.  相似文献   

4.
5.
There are at least two distinct classes of caspases, initiators (e.g. caspases-8, -9, and -10) and effectors (e.g. caspase-3). Furthermore, it is believed that there are two distinct primary apoptotic signaling pathways, one of which is mediated by death receptors controlled by caspases-8/10, and the other by the release of cytochrome c and activation of a caspase-9/Apaf1/cytochrome c apoptosome. However, several recent reports have demonstrated that caspase-8, and its substrate Bid, are frequently activated in response to certain apoptotic stimuli in a death receptor-independent manner. These results suggest that significant cross-talk may exist between these two distinct signaling arms, allowing each to take advantage of elements unique to the other. Here we provide evidence that activation of caspase-8, and subsequent Bid cleavage, does indeed participate in cytochrome c-mediated apoptosis, at least in certain circumstances and cell types. Furthermore, the participation of activated caspase-3 is essential for activation of caspase-8 and Bid processing to occur. Although caspase-8 activation is not required for the execution of a cytochrome c-mediated death signal, we found that it greatly shortens the execution time. Thus, caspase-8 involvement in cytochrome c-mediated cell death may help to amplify weaker death signals and ensure that apoptosis occurs within a certain time frame.  相似文献   

6.
The molecular machinery of apoptosis is evolutionarily conserved with some exceptions. One such example is the Drosophila proapoptotic gene Head involution defective (Hid), whose mammalian homologue is not known. Hid is apoptotic to mammalian cells, and we have examined the mechanism by which Hid induces death. We demonstrate for the first time a role for the extracellular signal-related kinase-1/2 (Erk-1/2) in the regulation of Hid function in mammalian cells. Bcl-2 and an inhibitor of caspase-9 blocked apoptosis, indicative of a role for the mitochondrion in this pathway, and we provide evidence for a role for caspase-8 in Hid-induced apoptosis. Thus, apoptosis was blocked by an inhibitor of caspase-8, deletion of caspase-8 rendered cells resistant to Hid-induced apoptosis, and Hid associated with caspase-8 in cell lysates. The Fas-associated death domain (FADD) was dispensable for the apoptotic function of Hid, indicating that Hid does not require extracellular death receptor signaling for the activation of caspase-8. In activated T cells, the cytokine interleukin-2 blocked caspase-8 processing and apoptosis, suggesting that survival cues from trophic factors may target a Hid-like intermediate present in mammalian cells. Thus, this study shows that Hid engages with conserved components of cellular death machinery and suggests that apoptotic paradigms characterized by FADD-independent activation of caspase-8 may involve a Hid-like molecule in mammalian cells.  相似文献   

7.

Background

Signaling networks are designed to sense an environmental stimulus and adapt to it. We propose and study a minimal model of signaling network that can sense and respond to external stimuli of varying strength in an adaptive manner. The structure of this minimal network is derived based on some simple assumptions on its differential response to external stimuli.

Methodology

We employ stochastic differential equations and probability distributions obtained from stochastic simulations to characterize differential signaling response in our minimal network model. Gillespie''s stochastic simulation algorithm (SSA) is used in this study.

Conclusions/Significance

We show that the proposed minimal signaling network displays two distinct types of response as the strength of the stimulus is decreased. The signaling network has a deterministic part that undergoes rapid activation by a strong stimulus in which case cell-to-cell fluctuations can be ignored. As the strength of the stimulus decreases, the stochastic part of the network begins dominating the signaling response where slow activation is observed with characteristic large cell-to-cell stochastic variability. Interestingly, this proposed stochastic signaling network can capture some of the essential signaling behaviors of a complex apoptotic cell death signaling network that has been studied through experiments and large-scale computer simulations. Thus we claim that the proposed signaling network is an appropriate minimal model of apoptosis signaling. Elucidating the fundamental design principles of complex cellular signaling pathways such as apoptosis signaling remains a challenging task. We demonstrate how our proposed minimal model can help elucidate the effect of a specific apoptotic inhibitor Bcl-2 on apoptotic signaling in a cell-type independent manner. We also discuss the implications of our study in elucidating the adaptive strategy of cell death signaling pathways.  相似文献   

8.
We have previously shown that rat astrocytes undergo apoptosis upon inflammatory activation. Nitric oxide (NO) produced by activated astrocytes was the major cytotoxic mediator in this type of autoregulatory apoptosis. However, an inhibitor of nitric oxide synthase did not completely block the apoptosis of activated astrocytes, suggesting the presence of other apoptotic pathways. Here, we present evidence that caspase-11 is an essential molecule in NO-independent apoptotic pathway of activated astrocytes. Inflammatory activation (lipopolysaccharide, interferon-gamma, and tumor necrosis factor-alpha treatment) of rat astrocyte cultures and C6 glioma cells led to the induction of caspase-11 followed by activation of caspases-11, -1, and -3. In contrast, NO donors induced activation of caspase-3 only. Inactivation of caspase-11 by the transfection of dominant negative mutant or treatment with the caspase inhibitors rendered the astrocytes partially resistant to the apoptosis following inflammatory activation, but not NO donor exposure. These results indicate that inflammatory stimuli not only induce the production of cytotoxic NO, but also initiate NO-independent apoptotic pathway through the induction of caspase-11 expression.  相似文献   

9.
Many apoptotic pathways culminate in the activation of caspase cascades usually triggered by the apical caspases-8 or -9. We describe a paradigm where apoptosis is initiated by the effector caspase-3. Diethylmaleate (DEM)-induced apoptotic damage in Jurkat cells was blocked by the anti-apoptotic protein Bcl-2, whereas, a peptide inhibitor of caspase-3 but not caspase-9 blocked DEM-induced mitochondrial damage. Isogenic Jurkat cell lines deficient for caspase-8 or the adaptor FADD (Fas associated death domain) were not protected from DEM-induced apoptosis. Caspase-3 activation preceded that of caspase-9 and initial processing of caspase-3 was regulated independent of caspase-9 and Bcl-2. However, inhibitors of caspase-9 or caspase-6 regulated caspase-3 later in the pathway. We explored the mechanism by which caspase-3 processing is regulated in this system. DEM triggered a loss of Erk-1/2 phosphorylation and XIAP (X-linked inhibitor of apoptosis protein) expression. The phorbol ester PMA activated a MEK-dependent pathway to block caspase-3 processing and cell death. Constitutively active MEK-1 (CA-MEK) upregulated XIAP expression and exogenous XIAP inhibited DEM-induced apoptotic damage. Thus, we describe a pathway where caspase-3 functions to initiate apoptotic damage and caspase-9 and caspase-6 amplify the apoptotic cascade. Further, we show that MEK may regulate caspase-3 activation via the regulation of XIAP expression in these cells.  相似文献   

10.
We have previously reported that CD40 stimulation sensitizes human memory B cells to undergo apoptosis upon subsequent B cell receptor (BCR) ligation. We have proposed that activation stimuli connect the BCR to an apoptotic pathway in mature B cells and that BCR-induced apoptosis of activated B cells could serve a similar function as activation-induced cell death in the mature T cell compartment. Although it has been reported that caspases are activated during this process, the early molecular events that link the Ag receptor to these apoptosis effectors are largely unknown. In this study, we report that acquisition of susceptibility to BCR-induced apoptosis requires entry of memory B cells into the S phase of the cell cycle. We also show that transduction of the death signal via the BCR sequentially proceeds through a caspase-independent and a caspase-dependent phase, which take place upstream and downstream of the mitochondria, respectively. Furthermore, our data indicate that the BCR-induced alterations of the mitochondrial functions are involved in activation of the caspase cascade. We have found both caspases-3 and -9, but not caspase-8, to be involved in the BCR apoptotic pathway, thus supporting the notion that initiation of the caspase cascade could be under the control of the caspase-9/Apaf-1/cytochrome c multimolecular complex. Altogether, our findings establish the mitochondria as the connection point through which the Ag receptor can trigger the executioners of apoptotic cell death in mature B lymphocytes.  相似文献   

11.
c-Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase family, is activated in response to a number of extracellular stimuli, including inflammatory cytokines, UV irradiation and ischaemia. A large body of evidence supports a role for JNK signalling in stress-induced apoptosis. It has been hypothesized that JNK may contribute to the apoptotic response by regulating the intrinsic cell death pathway involving the mitochondria. Here, we examined the role of the JNK signalling pathway in hippocampal CA1 apoptotic neurones following transient ischaemia in gerbils. We showed early activation of death receptor-dependent apoptosis (caspase-8 activation 2 days after ischaemia) and a biphasic activation of caspase-3 and caspase-9 after ischaemia. Activation of the mitochondrial pathway, as measured by cytochrome c release, appeared as a late event (5-7 days after ischaemia). AS601245, a novel JNK inhibitor, antagonized activation of both pathways and significantly protected CA1 neurones from cell death. Our results suggest a key role of JNK in the control of death receptor and mitochondrial-dependent apoptosis after transient ischaemia.  相似文献   

12.
Activation of executioner caspases during receptor-mediated apoptosis in type II cells requires the engagement of the mitochondrial apoptotic pathway. Although it is well established that recruitment of mitochondria in this context involves the cleavage of Bid to truncated Bid (tBid), the precise post-mitochondrial signaling responsible for executioner caspase activation is controversial. Here, we used distinct clones of type II Jurkat T-lymphocytes in which the mitochondrial apoptotic pathway had been inhibited to investigate the molecular requirements necessary for Fas-induced apoptosis. Cells overexpressing either Bcl-2 or Bcl-xL were protected from apoptosis induced by agonistic anti-Fas antibody. By comparison, Apaf-1-deficient Jurkat cells were sensitive to anti-Fas, exhibiting Bid cleavage, Bak activation, the release of cytochrome c and Smac, and activation of executioner caspase-3. Inhibiting downstream caspase activation with the pharmacological inhibitor Z-DEVD-fmk or by expressing the BIR1/BIR2 domains of X-linked inhibitor of apoptosis protein (XIAP) decreased all anti-Fas-induced apoptotic changes. Additionally, pretreatment of Bcl-xL-overexpressing cells with a Smac mimetic sensitized these cells to Fas-induced apoptosis. Combined, our findings strongly suggest that Fas-mediated activation of executioner caspases and induction of apoptosis do not depend on apoptosome-mediated caspase-9 activation in prototypical type II cells.  相似文献   

13.
Inflammasomes are innate immune mechanisms that activate caspase-1 in response to a variety of stimuli, including Salmonella infection. Active caspase-1 has a potential to induce two different types of cell death, depending on the expression of the pyroptosis mediator gasdermin D (GSDMD); following caspase-1 activation, GSDMD-sufficient and GSDMD-null/low cells undergo pyroptosis and apoptosis, respectively. Although Bid, a caspase-1 substrate, plays a critical role in caspase-1 induction of apoptosis in GSDMD-null/low cells, an additional mechanism that mediates this cell death independently of Bid has also been suggested. This study investigated the Bid-independent pathway of caspase-1-induced apoptosis. Caspase-1 has been reported to process caspase-6 and caspase-7. Silencing of caspase-7, but not caspase-6, significantly reduced the activation of caspase-3 induced by caspase-1, which was activated by chemical dimerization, in GSDMD/Bid-deficient cells. CRISPR/Cas9-mediated depletion of caspase-7 had the same effect on the caspase-3 activation. Moreover, in the absence of GSDMD and Bid, caspase-7 depletion reduced apoptosis induced by caspase-1 activation. Caspase-7 was activated following caspase-1 activation independently of caspase-3, suggesting that caspase-7 acts downstream of caspase-1 and upstream of caspase-3. Salmonella induced the activation of caspase-3 in GSDMD-deficient macrophages, which relied partly on Bid and largely on caspase-1. The caspase-3 activation and apoptotic morphological changes seen in Salmonella-infected GSDMD/Bid-deficient macrophages were attenuated by caspase-7 knockdown. These results suggest that in addition to Bid, caspase-7 can also mediate caspase-1-induced apoptosis and provide mechanistic insights into inflammasome-associated cell death that is one major effector mechanism of inflammasomes.  相似文献   

14.
Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1β and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1β cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3?/? Casp8?/? macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.  相似文献   

15.
Distinct apoptotic response of the type I/type II cells against Fas-ligand stimulation is considered to arise from the difference in dominant signaling pathways involved. In the type I cells, apoptotic signaling predominantly takes place via the direct activation of caspase-3 by activated caspase-8 (D channel) while mitochondrial pathway (M channel) plays a major role in the type II cells. To elucidate the selection mechanism of dominant pathway, we carried out systematic model analysis of the Fas signaling-induced apoptosis network. An increase in the expression level of caspase-8 induced a switch of dominant pathway from M- to D-channel (M–D transition), showing a phenotypic change from type II to type I cells. With the aid of sensitivity analysis and kinetic considerations, we succeeded in constructing a minimal network model relevant for the M–D transition, which revealed that mechanistic origin of the transition lies in the competition between the activated forms of caspase-8 and caspase-9 for their common substrate caspase-3. The pathway dominance was found to be primarily controlled by the balance between the activation rate of caspase-8 and the initial level of caspase-9. In the full network model, we showed that differential formation ability of the death-inducing signaling complex (DISC) can also induce M–D transition, in accordance with the experimental observations.  相似文献   

16.
We previously demonstrated that caspase-3, an executioner of apoptosis, is activated in the pressure-induced apoptosis of murine erythroleukemia (MEL) cells (at 100 MPa). Here, we examined the pathway of caspase-3 activation using peptide substrates and caspase inhibitors. Using the substrates of caspases-8 and -9, it was found that both are activated in cells under high pressure. The production of nuclei with sub-G1 DNA content in 100 MPa-treated MEL cells was suppressed by inhibitors of caspases-8 and -9, and pan-caspase. In 100 MPa-treated cells, pan-caspase inhibitor partially prevented the cytochrome c release from the mitochondria and the breakdown of mitochondrial membrane potential. These results suggest that the intrinsic and extrinsic pathways are activated in apoptotic signaling during the high pressure-induced death of MEL cells.  相似文献   

17.
In hematopoietic cells, Ras has been implicated in signaling pathways that prevent apoptosis triggered by deprivation of cytokines, such as interleukin-3 (IL-3). However, the mechanism whereby Ras suppresses cell death remains incompletely understood. We have investigated the role of Ras in IL-3 signal transduction by using the cytokine-dependent BaF3 cell line. Herein, we show that the activation of the pro-apoptotic protease caspase-3 upon IL-3 removal is suppressed by expression of activated Ras, which eventually prevents cell death. For caspase-3 suppression, the Raf/extracellular signal-regulated kinase (ERK)- or phosphatidylinositol 3-kinase (PI3-K)/Akt-mediated signaling pathway downstream of Ras was required. However, inhibition of both pathways did not block activated Ras-dependent suppression of cell death-associated phenotypes, such as nuclear DNA fragmentation. Thus, a pathway that is independent of both Raf/ERK and PI3-K/Akt pathways may function downstream of Ras, preventing activated caspase-3-initiated apoptotic processes. Conditional activation of c-Raf-1 also suppressed caspase-3 activation and subsequent cell death without affecting Akt activity, providing further evidence for a PI3-K/Akt-independent mechanism.  相似文献   

18.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

19.
Oxidative stress occurs as a consequence of disturbance in the balance between the generation of reactive oxygen species (ROS) and the antioxidant defence mechanisms. The interaction of ROS with DNA can cause single-, or double-strand breaks that subsequently can lead to the activation of p53, which is central for the regulation of cellular response, e.g. apoptosis, to a range of environmental and intracellular stresses. Previous reports have suggested a regulatory role of p53 in the early activation of caspase-2, upstream of mitochondrial apoptotic signaling. Here we show that excessive ROS formation, induced by 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) exposure, induces apoptosis in primary cultured neural stem cells (NSCs) from cortices of E15 rat embryos. Following DMNQ exposure cells exhibited apoptotic hallmarks such as Bax oligomerization and activation, cytochrome c release, caspase activation and chromatin condensation. Additionally, we could show early p53 accumulation and a subsequent activation of caspase-2. The attenuation of caspase-2 activity with selective inhibitors could antagonize the mitochondrial signaling pathway and cell death. Overall, our results strongly suggest that DMNQ-induced oxidative stress causes p53 accumulation and consequently caspase-2 activation, which in turn initiates apoptotic cell death via the mitochondria-mediated caspase-dependent pathway in NSCs.  相似文献   

20.
The death receptor CD95 (APO-1/Fas), the anticancer drug etoposide, and gamma-radiation induce apoptosis in the human T cell line Jurkat. Variant clones selected for resistance to CD95-induced apoptosis proved cross-resistant to etoposide- and radiation-induced apoptosis, suggesting that the apoptosis pathways induced by these distinct stimuli have critical component(s) in common. The pathways do not converge at the level of CD95 ligation or caspase-8 signaling. Whereas caspase-8 function was required for CD95-mediated cytochrome c release, effector caspase activation, and apoptosis, these responses were unaffected in etoposide-treated and irradiated cells when caspase-8 was inhibited by FLIPL. Both effector caspase processing and cytochrome c release were inhibited in the resistant variant cells as well as in Bcl-2 transfectants, suggesting that, in Jurkat cells, the apoptosis signaling pathways activated by CD95, etoposide, and gamma-radiation are under common mitochondrial control. All three stimuli induced ceramide production in wild-type cells, but not in resistant variant cells. Exogenous ceramide bypassed apoptosis resistance in the variant cells, but not in Bcl-2-transfected cells, suggesting that apoptosis signaling induced by CD95, etoposide, and gamma-radiation is subject to common regulation at a level different from that targeted by Bcl-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号