首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of N-acetylimidazole, a mild acetylating reagent, on the catalytic activities and subunit structure of the bovine pituitary multicatalytic proteinase complex (MPC) was studied. The trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide) and the peptidylglutamyl-peptide bond hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) of MPC were rapidly inactivated by N-acetylimidazole, whereas the chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide) was inactivated slowly. However, the hydrolysis of casein was markedly stimulated. Hydrolysis of casein by the acetylated enzyme generated a stable intermediate (21 kDa) which could be further degraded by native MPC. Treatment of acetylated MPC with hydroxylamine reversed the changes in trypsin-like and caseinolytic activities but did not restore the PGP activity. N-Acetylimidazole did not dissociate MPC but altered its migration on nondissociating gels presumably by acetylation of epsilon-amino groups of lysine residues. Hydroxylamine did not alter the gel electrophoretic appearance of the acetylated enzyme. These results indicate that acetylation of thiol or tyrosyl groups changes the trypsin-like and caseinolytic activities, and that amino group acetylation inhibits the PGP activity. Degradation of casein by MPC appears to be a sequential process with initial cleavage catalyzed by a component distinct from the chymotrypsin-like, trypsin-like, and PGP activities. The latter three components likely participate in the secondary proteolysis of the generated intermediates.  相似文献   

2.
Chicken liver multicatalytic proteinase is composed of multiple components with molecular masses ranging from 23 to 34 kDa and has 'chymotrypsin-like' and 'trypsin-like' activities, which were examined by using the chromogenic peptide substrates, succinyl-Phe-Leu-Phe-pNA(p-nitroanilide) and N-benzoyl-Phe-Val-Arg-pNA, respectively. Treatment of the enzyme with diisopropyl fluorophosphate (DFP) completely abolished the 'chymotrypsin-like' activity, but had little effect on the 'trypsin-like' activity. In the experiment with radio-labeled DFP, SDS-PAGE of the modified enzyme revealed that the radioactivity was incorporated into only the smallest subunit (23 kDa). The migration of this subunit was retarded on SDS-PAGE after the treatment with DFP.  相似文献   

3.
Two forms of a neutral--alkaline high-molecular-mass proteinase (termed A1 and A2) have been purified from human erythrocytes by a procedure including a DEAE-cellulose batchwise treatment of erythrocyte cytosol, gel filtration and DEAE-cellulose chromatography. Both enzymes show distinctive properties of multicatalytic proteinases. They have an apparent molecular mass of 700 kDa and are composed by eight major subunits (23-32 kDa). Both enzymes show a proteinase activity towards casein and hydrolyze synthetic peptides with tyrosine, arginine or lysine at the P1 position. Among the synthetic peptides tested, the tetrapeptide succinyl-leucyl-leucyl-valyl-tyrosyl-7-amido-4-methylcoumarin and tripeptides with arginine in the P1 position (benzyloxycarbonyl-valyl-leucyl-arginyl-4-methoxy-2-naphthylamide and benzyloxycarbonyl-alanyl-arginyl-arginyl-4-methoxy-2-naphthylamide) are the most effective substrates. The proteinases are devoid of amino and diaminopeptidase activity. Both enzymes are completely inhibited by hemin, chymostatin and thiol-group reagents. However, the enzymes can be distinguished by the isoelectric point, the different effect of nucleotides, glutathione disulphide, sodium dodecyl sulfate and cations on the catalytic activity.  相似文献   

4.
5.
Calcium-induced autolysis of bovine erythrocyte calpain I occurs in multiple stages. Initially, a 14 amino acid segment is cleaved from the N-terminus of the native 80 kDa catalytic subunit, yielding a 78 kDa form of the subunit. Then, an additional 12 amino acid segment is cleaved from the N-terminus, forming a 76 kDa subunit. The 76 kDa enzyme is the active form of the catalytic subunit that is able to proteolyze the 30 kDa regulatory subunit as well as exogenous substrates. While the initial autolytic step requires high calcium, the 76 kDa enzyme form is active in microM calcium and can cleave the amino termini of native 80 kDa and intermediate 78 kDa enzyme forms at low calcium. Both intramolecular and intermolecular proteolysis of the catalytic subunit appear to yield the same products.  相似文献   

6.
The 20S proteasome is the catalytic core of the ubiquitin proteolytic pathway, which is implicated in many cellular processes. The cylindrical structure of this complex consists of four stacked rings of seven subunits each. The central cavity is formed by two beta catalytic subunit rings in which protein substrates are progressively degraded. The 20S proteasome is isolated in a latent form which can be activated in vitro by various chemical and physical treatments. In this study, the effects of high hydrostatic pressures on 20S proteasome enzymatic activity were investigated. When proteasomes were subjected to increasing hydrostatic pressures, a progressive loss of peptidase activities was observed between 75 and 150 MPa. The inactivation also occurred when proteasomes were pressurized in the presence of synthetic peptide substrates; this may be the result of the dissociation of the 20S particle into its subunits under pressure, as was shown by PAGE. Pressurized proteasomes also lost their caseinolytic activity. In contrast, in the presence of casein, the pressure-induced inactivation and the dissociation of the 20S particles were prevented. In addition, in comparison to that observed at atmospheric pressure, their caseinolytic activity was increased under pressure. Following depressurization, the caseinolytic activity returned to basal levels but was further enhanced following an additional pressurization treatment. Thus, the structure of the 20S particle exhibits a certain degree of plasticity. This pressure-induced activation of the 20S proteasome is discussed in relation to its hollow structure, its currently accepted proteolytic mechanism and the general effect of high pressures on the biochemical reactions and structures of biopolymers.  相似文献   

7.
The breakdown of beta-casein (caseinolytic activity) by the bovine pituitary multicatalytic proteinase complex (MPC) is initiated by a fourth active site different from the previously described chymotrypsin-like activity (cleavage of Cbz-Gly-Gly-Leu-p-nitroanilide, where Cbz is benzyloxycarbonyl), trypsin-like activity (cleavage of Cbz-D-Ala-Leu-Arg-2-naphthylamide), and peptidylglutamyl peptide bond-hydrolyzing (PGP) activity (cleavage of Cbz-Leu-Leu-Glu-2-naphthylamide) (Yu, B., Pereira, M. E., and Wilk, S. (1991) J. Biol. Chem. 266, 17396-17400). 3,4-Dichloroisocoumarin, a serine proteinase inhibitor, stimulated the caseinolytic activity of bovine pituitary or lens MPC, 3-18-fold under conditions under which the other three catalytic activities were inactivated. Addition of hydroxylamine to the modified enzyme did not reverse the effects of the inhibitor. A form of the proteinase exhibiting only 2-4% of control chymotrypsin-like, trypsin-like, and PGP activities degraded beta-casein with no accumulation of intermediate peptides. 3,4-Dichloroisocoumarin, by reacting with the chymotrypsin-like, trypsin-like, and/or PGP-active sites, may promote a conformational change of MPC, rendering the caseinolytic active site accessible to the substrate. Once bound to the active site, beta-casein is rapidly degraded either by the caseinolytic component itself or by a cooperative interaction with catalytic centers that are not affected by the serine proteinase inhibitor. These results imply that the caseinolytic component does not belong to the class of serine proteinases. Other proteins tested were not degraded by the 3,4-dichloroisocoumarin-treated enzyme, suggesting that the conformation of beta-casein may be more adequate for degradation by the caseinolytic component.  相似文献   

8.
Surface plasmon resonance has been used to study the interaction between the subunits composing protein kinase CK2 (two catalytic, -subunits, and two regulatory, -subunits), as well as the interaction of each subunit with two types of protein substrates, casein, the phosphorylation of which is activated by the regulatory subunit, and calmodulin, which belongs to the kind of substrates on which the catalytic subunit is down regulated by the regulatory subunit. The interaction of casein with the catalytic subunit differs from the interaction with the holoenzyme. Similarly to the interaction with the regulatory subunit, the catalytic subunit interacts with the protein substrate forming a very stable, irreversible complex. The reconstituted holoenzyme, however, binds casein reversibly, displaying a binding mode similar to that displayed by the regulatory subunit. The interaction of calmodulin with the catalytic subunit gives place, like in the case of casein, to an irreversible complex. The interactions with the regulatory subunit, and with the holoenzyme were practically negligible, and the interaction with the regulatory subunit disappeared upon increasing the temperature value to close to 30°C. The presence of polylysine induced a high increase in the extent of calmodulin binding to the holoenzyme. The results obtained suggest that CK2 subunit and protein substrates share a common, or at least an overlapping site of interaction on the catalytic subunit. The interaction between both subunits would prevent substrates from binding irreversibly to subunit, and, at the same time, it would generate a new and milder site of interaction between the whole holoenzyme and the protein substrate. The main difference between casein and calmodulin would consist in the lower affinity display by the last for the new site generated upon the binding of the regulatory subunit, in the absence of polycations like polylysine.  相似文献   

9.
The proenzyme form of the Ca2+-requiring neutral proteinase of human erythrocytes (procalpain) is converted to the active proteinase (calpain) by low concentrations of Ca2+ in the presence of appropriate substrates such as beta-hemoglobin or heme-free beta-globin chains. Modification of these substrates by limited proteolysis with calpain abolishes their ability to promote the conversion of procalpain. A similar requirement for the presence of unmodified beta-hemoglobin or heme-free beta-globin chains is observed for the autocatalytic inactivation of calpain. The conversion of procalpain to calpain is accompanied by a small decrease in the molecular mass of the catalytic subunit, from 80 kDa to 75 kDa; however, the activation is not accelerated by the addition of a small quantity of calpain. The autocatalytic inactivation of active CANP is related to the disappearance of the 75 kDa subunit and the formation of smaller peptide fragments.  相似文献   

10.
The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either alone or in combination with the recombinant non-catalytic beta subunit. Calmodulin is not phosphorylated by the CK2 holoenzyme, in either the native or the reconstituted form, unless polylysine is added. In the presence of polylysine, it becomes a good substrate for CK2 (Km 14.2 microM, Kcat 4.6 mol.min-1.mol CK2-1). The recombinant alpha subunit, however, spontaneously phosphorylates calmodulin, this phosphorylation being actually inhibited rather than stimulated by polylysine. The calmodulin tridecapeptide, RKMKDTDSEEEIR, reproducing the phosphorylation site for CK2, is spontaneously phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine. On the contrary, the phosphorylation of the nonapeptide, MSSSEEVSW, reproducing the beta-subunit phosphoacceptor site, is dramatically stimulated by polylysine. Using a variety of small peptide substrates, it was shown that phosphorylation rate is diversely stimulated by polylysine. The observed stimulation, moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme, either native or reconstituted. While the phosphorylation of the peptide RRRDDDSDDD by CK2 is stimulated 2.8-fold, with 15 nM polylysine being required for half-maximal stimulation, a stimulation of only 1.9-fold, with 80 nM polylysine required for half-maximal stimulation, is attained with recombinant alpha subunit. The concentration of polylysine required for half-maximal stimulation is comparable to CK2 concentration and increases by increasing CK2 concentration, suggesting that polylysine primarily interacts with the enzyme, rather than with the peptide substrate.  相似文献   

11.
The presence of two distinct high-molecular-weight proteases with similar pH optima in the weakly alkaline region was shown in cytosol of the bovine brain cortex. They were separated by ammonium sulfate fractionation and each was further purified by DEAE-Sephacel Sephacryl S-300, DEAE-Cibacron Blue 3GA-agarose, heparin-agarose, and Sepharose 6B chromatography. The larger enzyme (Mr 1,400 kDa), which precipitates at 0–38% ammonium sulfate saturation, seems to be active in ATP+ubiquitin (Ub)-dependent proteolysis; it has low basal caseinolytic activity that is stimulated 3-fold by ATP, and when Ub is present ATP causes a 4.5-fold stimulation. A second proteinase was also found to be present (Mr 700 kDa) that precipitates at 38–80% ammonium sulfate saturation, is composed of multiple subunits ranging in Mr from 18 to 30 kDa, and degrades both protein and peptide substrates, demonstrating trypsin-, chymotrypsin- and cucumisin-like activities. Catalytic, biochemical, and immunological characteristics of this proteinase indicate that it is a multicatalytic proteinase complex (MPC), whose enzyme activity, in contrast to that of MPC from bovine pituitaries (1–3), is stimulated 1.7-fold by addition of ATP in the absence of ubiquitin at the early steps of purification; this property is lost during the course of further purification. Both proteinases are present in the nerve cells, since the primary chicken embryonic telencephalon neuronal cell culture extracts contain both ATP+Ub-dependent proteinase and MPC activities.Special issue dedicated to Dr. Paola S Timiras  相似文献   

12.
We have investigated the proteolytic degradation of [14C]methylcasein and 125I-labeled bovine serum albumin at pH 7.8 and 37 degrees C by lysates of rabbit reticulocytes purified from rabbit blood by two different procedures. (I) Lysates obtained from reticulocytes after removal of plasma and buffy coat as well as after washing of cells, degraded casein and albumin, and released from the two substrates 1.3%/h and 0.4%/h, respectively, of acid-soluble radioactivity. The activity towards both substrates was stimulated about 4-fold by ATP/Mg2+. Chromatography of whole blood on a column of cellulose prior to washing and lysis of cells had profound but differential effects on these activities in that stimulation of casein-degradation by ATP/Mg2+ was almost completely lost, whereas degradation of albumin, albeit at a low rate, was measurable in the presence of ATP/Mg2+ only. (II) Degradation of casein by these lysates is largely inhibited by a monospecific antibody against rabbit multicatalytic proteinase, whereas digestion of albumin is not affected by the antibody, either in the presence or absence of ATP/Mg2+. The latter activity is partially inhibited by a specific antibody against rabbit alpha 1-macroglobulin. (III) The immunoreactive amount of multicatalytic proteinase is about 1.2 micrograms per mg of lysate protein and almost identical in the two lysates. In contrast, the immunologically detectable levels of alpha 1-macroglobulin vary and are much lower in reticulocyte-lysates following chromatography on cellulose than in lysates from washed reticulocytes. (IV) Caseinolytic activity of multicatalytic proteinase, purified from rabbit reticulocyte lysate, is not activated by ATP/Mg2+ and the enzyme is proteolytically inactive towards albumin. On the other hand, a complex consisting of the proteinase inhibitor alpha 1-macroglobulin and the cysteine proteinase, cathepsin B, does degrade both substrates at pH 7.8, in an ATP/Mg2+-activated fashion. From these results it is concluded that the multicatalytic proteinase is an ATP-independent enzyme and a cellular constituent of rabbit reticulocytes whereas the activity stimulated by ATP/Mg2+ appears to be associated, at least in part, with a cysteine proteinase complexed to alpha 1-macroglobulin.  相似文献   

13.
The multicatalytic proteinase. Multiple proteolytic activities   总被引:9,自引:0,他引:9  
The multicatalytic proteinase is a high molecular weight nonlysosomal proteinase which has been isolated from a variety of mammalian tissues and has been suggested to contain several distinct catalytic sites. The enzyme degrades protein and peptide substrates and can cleave bonds on the carboxyl side of basic, hydrophobic, and acidic amino acid residues. The three types of activity have been referred to as trypsin-like, chymotrypsin-like, and peptidyl-glutamyl peptide bond hydrolyzing activities, respectively. All of these proteolytic activities are associated with a single band on native polyacrylamide gels. The pH optimum of the proteinase (pH 7.5-9.5) depends on the substrate. Using synthetic peptide substrates it was possible to demonstrate two distinct activities. Trypsin-like activity is inhibited at concentrations of the peptide aldehyde inhibitors leupeptin and antipain or of N-ethylmaleimide which have little or no effect on chymotrypsin-like activity. Results of mixed-substrate experiments also suggest that there are at least two distinct types of catalytic sites. All proteolytic activity is lost following dissociation by urea or by acid treatment. Polyclonal antibodies raised against the intact multicatalytic proteinase precipitate the complex but have little effect on its proteolytic activities.  相似文献   

14.
C Cardozo  C Michaud  M Orlowski 《Biochemistry》1999,38(30):9768-9777
Two catalytic components of the multicatalytic proteinase complex (MPC, proteasome) designated as chymotrypsin-like (ChT-L) and branched chain amino acid preferring (BrAAP) cleave bonds after hydrophobic amino acids. The possible involvement of the ChT-L and peptidylglutamyl-peptide hydrolyzing (PGPH) activities in the cleavage of bonds attributed to the BrAAP component was examined. Several inhibitors of the ChT-L activity containing a phenylalaninal group did not affect the BrAAP activity at concentrations that were more than 150 times higher than their K(i) values for the ChT-L activity. Concentrations of lactacystin that inactivated more than 90% of the ChT-L activity had no effect on the BrAAP activity. Concentrations of 3,4-dichloroisocoumarin (DCI) that inactivated the ChT-L activity activated by up to 10-fold the BrAAP activity toward synthetic substrates and by more than 2-fold the degradation of the insulin B chain in a reaction not inhibited by Z-LGF-CHO, a selective inhibitor of the ChT-L activity. These findings are incompatible with any significant involvement of the ChT-L activity in the cleavage of BrAAP substrates. Both the native and DCI-treated MPC cleaved the insulin B chain mainly after acidic residues in a reaction inhibited by Z-GPFL-CHO, an inhibitor of the BrAAP and PGPH activities. DCI exposure did not result in acylation of the N-terminal threonine in the active site of the Y subunit. These results suggest involvement of the PGPH activity in the cleavage of BrAAP substrates, but this conclusion is incompatible with DCI activation of the BrAAP activity and inactivation of the PGPH activity, and with the finding that proteins inhibiting the PGPH activity had no effect on the BrAAP activity. Rationalization of these contradictions is discussed.  相似文献   

15.
Intracellular calcium-activated neutral proteinase (CANP) in rabbit erythrocytes was activated by an influx of Ca2+ into the cells. The catalytic large subunit changed from the original 79 kDa from to the 77 kDa and 76 kDa forms on activation just in the same manner as occurs in the autolytic activation of purified CANP in vitro. The activation required both extracellular Ca2+ and A23187, and was accompanied by the degradation of some membrane proteins and morphological changes in erythrocyte shape from discocytes to echinodisks, echinocytes, and spherocytes. Exogenously added Cbz-Leu-Leu-Leu-aldehyde inhibited the activation of intracellular CANP as well as the degradation of membrane proteins and the morphological changes indicating that the latter two processes are due to the action of CANP. Leupeptin and E64d were without effect on intracellular CANP.  相似文献   

16.
The alkaline elastase produced by alkalophilic Bacillus Ya-B was a new type of proteinase which had a very high optimum pH and high elastolytic activity. It also had a high hydrolyzing activity against keratin and collagen. The molecular weight was determined to be 23 700 and 25 000 by ultracentrifugation analysis and SDS-polycrylamide gel electrophoresis, respectively. The isoelectric point was 10.6. The optimum reaction temperature was 60°C. Like many alkaline proteinases, this enzyme required Ca2+ for stability. The optimum reaction pH was 11.75 toward casein and elastin-orcein. The Kcat/Km values of the enzyme to synthetic substrates were constant from pH 8.5 up to 12.75. The enzyme was stable in the pH range 5.0–10.0. The enzyme was inhibited by alkaline proteinase inhibitors Streptomyces subtilisin inhibitor and microbial alkaline proteinase inhibitor, but not by elastatinal or the metalloproteinase inhibitor metalloproteinase inhibitor. Sodium chloride inhibited the elastolytic activity but not the caseinolytic activity at a concentration below 0.2 M. The inhibitory effect of sodium chloride to elastolytic activity was much more prominent at pH 9.0 than at pH 11.5. More than 50% of the enzyme bound onto elastin in the pH range below the isoelectric point of this enzyme. The amino-terminal sequence of the enzyme was determined, and compared with those of subtilisin BPN′ and subtilisin Carlsberg. Extensive sequence homology was noted among these three enzymes.  相似文献   

17.
Two protein kinases active on casein and phosvitin were partially purified from the soluble fraction of ejaculated bovine spermatozoa. They were operationally termed casein kinase A and B based on the order of their elution from a phosphocellulose column. CK-A showed an approximate molecular mass of 38 kDa, and it phosphorylated serine residues of casein and phosvitin utilizing ATP as a phosphate donor (Km 19 microM). Enzyme activity was maximal in the presence of 10 mM MgCl2, whereas it decreased in the presence of spermine, polylysine, quercetin, and NaCl (20-250 mM). CK-B seemed to have a monomeric structure of about 41 kDa; it underwent autophosphorylation and cross-reacted with polyclonal antibodies raised against recombinant alpha, but not beta, subunit of human type 2 casein kinase. It phosphorylated both serine and threonine residues of casein and phosvitin, utilizing ATP (Km 12 microM) but not GTP as a phosphate donor. Threonine was more affected in the phosphorylated phosvitin than in the partially dephosphorylated substrate. CK-B was active toward the synthetic peptide Ser-(Glu)5 and calmodulin (in the latter case, in the presence of polylysine), and it was activated by spermine, polylysine, MgCl2 (30 mM), and NaCl (20-400 mM). The activity of the enzymes was not affected by cAMP, or the heat-stable inhibitor of the cAMP-dependent protein kinase, or calcium.  相似文献   

18.
Type-2 casein kinase-TS (Ck-TS) purified to homogeneity from rat liver cytosol exhibits a molecular mass of 130000 daltons in non-denaturating media and a subunit composition consistent with an alpha 2 beta 2 heterotetramer. The quaternary structure of Ck-TS is not compromised by limited proteolysis with trypsin which converts the 38-kDa alpha subunit into 36-kDa (alpha') and 34-kDa (alpha") derivatives, inducing a parallel decrease of enzymatic activity. Since the 25-kDa beta subunit is unaffected under comparable conditions, the catalytic activity seemingly resides in the alpha subunits. The beta subunit, on the other hand, undergoes a very rapid phosphorylation upon incubation of Ck-TS with ATP/Mg2+: 0.8-1.5 mol P/mol Ck-TS are incorporated within 30 s. Such a fast autophosphorylation is neither prevented nor slowed down by the addition of a large excess of phosphorylatable substrates and takes place through an intra-molecular rather than inter-molecular process. This conclusion is supported by the following data. (a) The autophosphorylation rate is linearly proportional to the concentration of Ck-TS. (b) Thermally inactivated Ck-TS is not phosphorylated by catalytic amounts of active enzyme. (c) Basic polypeptides like protamine and polylysine stimulate the activity of Ck-TS toward phosphorylatable substrates while preventing the autophosphorylation reaction. Since the effectors that inhibit autophosphorylation also induce a remarkable decrease of the Km values for the protein substrates, the possibility is discussed that autophosphorylation might represent a regulatory device by which Ck-TS could be converted into a partially inactivated form exhibiting reduced affinity toward its endogenous targets.  相似文献   

19.
Extracts of bovine pancreatic tissue are shown by HPLC to contain two distinct ternary complexes of procarboxypeptidase A (subunit I), chymotrypsinogen C (subunit II) and either proproteinase E or subunit III. It is shown that proproteinase E in the complex generates subunit III by removal of 13 N-terminal residues when the former is allowed to autolyze in solution or when catalytic amounts of isolated active proteinase E are added to it. Autolysis of proproteinase E was accompanied by the loss of potential activity towards specific synthetic substrates and occurred at a higher rate in pancreatic juice than in pancreatic tissue extracts, even when both were processed in the presence of serine protease inhibitors. We conclude that subunit III (also called truncated protease E) is an autolytic product of proproteinase E and not an ab initio component of the native ternary complex.  相似文献   

20.
A zinc-dependent proteinase was extracted from the cell wall of Lactobacillus delbrueckii subsp. bulgaricus and partially purified despite a marked unstability. The caseinolytic activity was associated with a polypeptide chain of 65 kDa that belonged to the M1 family of zinc-dependent proteases. This zinc-dependent proteinase could degrade intact caseins, with a significant preference for β-casein. The pH-profile of its activity indicated that its relative contribution to the caseinolytic activity increased at acidic pH, suggesting that this zinc proteinase could be involved in the late stages of milk fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号