首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.  相似文献   

2.
Lymphocyte homing is initiated by the binding of L-selectin on lymphocytes to its ligands on high endothelial venules (HEV). Sialyl 6-sulfo Lewis X is a major capping group of L-selectin ligands. N-Acetylglucosamine (GlcNAc) 6-sulfation is essential for the ligand activity, and is catalyzed by GlcNAc 6-O-sulfotransferases (GlcNAc6STs) of which GlcNAc6ST-1 and GlcNAc6ST-2 are expressed in HEV. Here, we report that mice deficient in GlcNAc6ST-1 were impaired in the elaboration of sialyl 6-sulfo Lewis X in HEV and that an epitope of L-selectin ligands recognized by the MECA-79 anti-body was greatly reduced or abolished in the abluminal aspect of HEV. Lymphocyte homing to peripheral lymph nodes, mesenteric lymph nodes, and Peyer's patches was significantly reduced in GlcNAc6ST-1 null mice. These results demonstrate that GlcNAc6ST-1 is involved in lymphocyte homing in vivo, and indicate that GlcNAc6ST-1 and -2 play complementary roles. The importance of GlcNAc6ST-1 is particularly high-lighted by its involvement in lymphocyte homing to Peyer's patches where GlcNAc6ST-2 expression is undetectable.  相似文献   

3.
The leukocyte adhesion molecule L-selectin mediates lymphocyte homing to secondary lymphoid organs and to certain sites of inflammation. The cognate ligands for L-selectin possess the unusual sulfated tetrasaccharide epitope 6-sulfo sialyl Lewis x (Siaalpha2-->3Galbeta1-->4[Fucalpha1-->3][SO(3)-->6]GlcNAc). Sulfation of GlcNAc within sialyl Lewis x is a crucial modification for L-selectin binding, and thus, the underlying sulfotransferase may be a key modulator of lymphocyte trafficking. Four recently discovered GlcNAc-6-sulfotransferases are the first candidate contributors to the biosynthesis of 6-sulfo sLex in the context of L-selectin ligands. Here we report the in vitro activity of the four GlcNAc-6-sulfotransferases on a panel of synthetic oligosaccharide substrates that comprise structural motifs derived from sialyl Lewis x. Each enzyme preferred a terminal GlcNAc residue, and was impeded by the addition of a beta1,4-linked Gal residue (i.e., terminal LacNAc). Surprisingly, for three of the enzymes, significant activity was observed with sialylated LacNAc, and two of the enzymes were capable of detectable sulfation of GlcNAc in the context of sialyl Lewis x. On the basis of these results, we propose possible pathways for 6-sulfo sialyl Lewis x biosynthesis and suggest that sulfation may be an early committed step.  相似文献   

4.
5.
Two members of the N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) family, GlcNAc6ST-1 and GlcNAc6ST-2, function in the biosynthesis of 6-sulfo sialyl Lewis X-capped glycoproteins expressed on high endothelial venules (HEVs) in secondary lymphoid organs. Thus, both enzymes play a critical role in L-selectin-expressing lymphocyte homing. Human GlcNAc6ST-1 is encoded by a 1593-bp open reading frame exhibiting two 5' in-frame methionine codons spaced 141 bp apart. Both resemble the consensus sequence for translation initiation. Thus, it has been hypothesized that both long and short forms of GlcNAc6ST-1 may be present, although endogenous expression of either form has not been confirmed in humans. Here, the authors developed an antibody recognizing amino acid residues between the first two human GlcNAc6ST-1 methionines. This antibody specifically recognizes the long form of the enzyme, a finding validated by Western blot analysis and immunofluorescence cytochemistry of HeLa cells misexpressing long and/or short forms of human GlcNAc6ST-1. Using this antibody, the authors carried out immunofluorescence histochemistry of human lymph node tissue sections and found endogenous expression of the long form of the enzyme in human tissue, predominantly in the trans-Golgi network of endothelial cells that form HEVs.  相似文献   

6.
The GlcNAc-6-sulfotransferases are a family of Golgi-resident enzymes that modulate glycan function. Two members of this family, GlcNAc6ST-1 and -2, collaborate in the biosynthesis of ligands for the leukocyte adhesion molecule L-selectin. Although their biochemical properties are similar in vitro, the enzymes have distinct glycoprotein substrate preferences in vivo. The sulfotransferases share similar overall architecture with the exception of an extended stem region in GlcNAc6ST-1 that is absent in GlcNAc6ST-2. In this study we probed the importance of the stem region with respect to substrate preference, localization, and oligomerization. Analysis of truncation mutants demonstrated that perturbation of the stem region of GlcNAc6ST-1 affects the cellular substrate preference of the enzyme without altering its retention within the Golgi. A chimeric enzyme comprising the stem region of GlcNAc6ST-1 inserted between the catalytic and transmembrane domains of GlcNAc6ST-2 had the same substrate preference as native GlcNAc6ST-1. In cells, GlcNAc6ST-1 exists as a dimer; two cysteine residues within the stem and transmembrane domain were found to be critical for dimerization. However, disruption of the dimer by mutagenesis did not affect either localization or substrate preference. Collectively, these results indicate that the stem region of GlcNAc6ST-1 influences substrate specificity, independent of its role in dimerization or Golgi retention.  相似文献   

7.
8.
The structural determination of sulfated carbohydrate chains from a cystic fibrosis patient respiratory mucins has shown that sulfation may occur either on the C-3 of the terminal Gal, or on the C-6 of the GlcNAc residue of a terminal N -acetyllactosamine unit. The two enzymes responsible for the transfer of sulfate from PAPS to the C-3 of Gal or to the C-6 of GlcNAc residues have been characterized in human respiratory mucosa. These two enzymes, in conjunction with fucosyl- and sialyltransferases, allow the synthesis of different sulfated epitopes such as 3-sulfo Lewis x (with a 3- O -sulfated Gal), 6-sulfo Lewis x and 6-sulfo-sialyl Lewis x (with a 6- O -sulfated GlcNAc). In the present study, the sequential biosynthesis of these epitopes has been investigated using microsomal fractions from human respiratory mucosa incubated with radiolabeled nucleotide-sugars or PAPS, and oligosaccharide acceptors, mostly prepared from human respiratory mucins. The structures of the radiolabeled products have been determined by their coelution in HPAEC with known oligosaccharidic standards. In the biosynthesis of 6- O -sulfated carbohydrate chains by the human respiratory mucosa, the 6- O -sulfation of a terminal nonreducing GlcNAc residue precedes beta1-4-galactosylation, alpha2-3-sialylation (to generate 6-sulfo-sialyl- N -acetyllactosamine), and alpha1-3-fucosylation (to generate the 6-sulfo-sialyl Lewis x determinant). The 3- O -sulfation of a terminal N -acetyllactosamine may occur if this carbohydrate unit is not substituted. Once an N -acetyllactosamine unit is synthesized, alpha1-3-fucosylation of the GlcNAc residue to generate a Lewis x structure blocks any further substitution. Therefore, the present study defines the pathways for the biosynthesis of Lewis x, sialyl Lewis x, sulfo Lewis x, and 6-sulfo-sialyl Lewis x determinants in the human bronchial mucosa.  相似文献   

9.
N-acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate to the C-6 position of non-reducing GlcNAc. Human GlcNAc6ST-1 was expressed as a fusion protein with protein A in an insect cell line (Tn 5 cells) using the baculovirus system. The recombinant enzyme was purified to homogeneity by IgG Sepharose column chromatography. The substrate specificity and the kinetic properties of the enzyme were similar to those of the enzyme expressed in the mammalian system. The purified recombinant enzyme was used to synthesize 6-sulfo GlcNAcbeta1-3Galbeta1-4Glc, which was identified by time of flight mass spectrometry. This sulfated trisaccharide served as a better substrate for microsomal galactosyltransferase from the mouse colon compared to 6-sulfo GlcNAc. The purified recombinant enzyme was also used to sulfate oligosaccharide chains on fibrinogen after enzymatic desialylation and degalactosylation to expose nonreducing GlcNAc residues. It is known that desialylation greatly increases the rate of clotting of fibrinogen after the addition of thrombin. Subsequent sulfation of desialylated and degalactosylated fibrinogen slightly decreased the rate of clotting. The recombinant GlcNAc6ST-1 is a useful reagent for 6-sulfate exposed GlcNAc residues both in oligosaccharides and in glycoproteins.  相似文献   

10.
Keratan sulfate (KS) is a glycosaminoglycan composed of repeating disaccharide units with sulfate residues at the C6 positions of galactose and N-acetylglucosamine (GlcNAc). The N-acetylglucosamine 6-O-sulfotransferase(s) (GlcNAc6ST) involved in the synthesis of KS in the central nervous system (CNS) has long been unidentified. Here, we report that a deficiency of GlcNAc6ST-1 leads to loss of 5D4-reactive brain KS and reduction of glial scar formation after cortical stab injury in mice. During the development of mice deficient in GlcNAc6ST-1, KS expression in the brain was barely detectable with the KS-specific antibody 5D4. The reactivity of 5D4 antibody with protein tyrosine phosphatase zeta (PTPzeta), a KS proteoglycan (KSPG), was abolished in the deficient mice. In adults, brain injury induced 5D4-reactive KS synthesis in the wounded area in wild-type (WT) mice but not in the deficient mice. Glial scar is formed via the accumulation of reactive astrocytes and is a major obstacle to axonal regeneration by injured neurons. Reactive astrocytes appeared to similar extents in the two genotypes, but they accumulated in the wounded area to a lesser extent in the deficient mice. Consequently, the deficient mice exhibited a marked reduction of scarring and enhanced neuronal regeneration after brain injury. These findings highlight the indispensable role of GlcNAc6ST-1 in brain KS biosynthesis and glial scar formation after brain injury.  相似文献   

11.
GlcNAc-6-O-sulfotransferase is involved in formation of 6-sulfo-N -acetyllactosamine-containing structures such as 6-sulfo sialyl Lewis x. We investigated the mode of expression of GlcNAc-6-O-sulfotransferase during postimplantation embryogenesis in the mouse by in situ hybridization. Sulfotransferase mRNA was not detected on embryonic day (E) 6.5, while on E7.5 it was detected in the mesoderm, ectoderm, and ectoplacental cone. On E10.5, the sulfotransferase signals were mainly observed in the nervous tissue. On E12.5 and 13.5, various tissues in the process of differentiation expressed this mRNA. Several epithelial and mesenchymal tissues undergoing epithelial-mesenchymal interactions strongly expressed the mRNA. For example, in the developing tooth strong sulfotransferase mRNA expression was found only in the condensing mesenchyme on E13.5. On E13.5 and 15.5, the sites showing intense expression of the sulfotransferase again became restricted. In the brain, sulfotransferase mRNA was frequently found as discrete signals in narrow regions. These results suggest that 6-sulfo-N-acetyllactosamine structures have important roles in development. On E13.5 and 15.5, G152 (6-sulfo sialyl Lewis x antigen) was expressed in the neocortex, and AG223 (6-sulfo Lewis x antigen) in the thalamus and neocortex where the sulfotransferase signal was detected. However, in other organs, expression of these antigens did not correlate with the sulfotransferase mRNA, implicating complex nature of regulation of expression of the fucosyl 6-sulfo antigens.  相似文献   

12.
Proinflammatory cytokines such as TNF-alpha up-regulate the expression of the cell adhesion molecule, CD44, and induce hyaluronan (HA) binding in peripheral blood monocytes (PBM). Here we show that in PBM, TNF-alpha induced cytoskeletal rearrangement, increased threonine phosphorylation of ERM proteins, and induced the redistribution and colocalization of phospho-ERM proteins (P-ERM) with CD44. In the myeloid progenitor cell line, KG1a, hyaluronan binding occurred in the pseudopod where CD44, P-ERM, and F-actin were highly localized. Hyaluronan binding correlated with high expression of both CD44 and P-ERM clustered in a single pseudopod. Disruption of polymerized actin reduced hyaluronan binding in both PBM and KG1a cells and abolished CD44 clustering and the pseudopod in KG1a cells. The pseudopod was not required for the clustering of CD44, the colocalization with P-ERM, or hyaluronan binding. However, treatment with a kinase inhibitor abolished ERM phosphorylation and reduced hyaluronan binding. Furthermore, expression of CD44 lacking the putative ERM binding site resulted in reduced hyaluronan binding. Taken together, these data suggest that CD44-mediated hyaluronan binding in human myeloid cells is regulated by P-ERM and the actin cytoskeleton.  相似文献   

13.
14.
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) transfers sulfate to the C-6 position of non-reducing N-acetylglucosamine (GlcNAc) residues. We cloned human and mouse cDNAs encoding a novel GlcNAc6ST, designated as GlcNAc6ST-4, which showed sequence identities of 26 to 41% to other GlcNAc6STs. Human organs with strong expression of the enzyme mRNA were the heart, spleen, and ovary, while in the mouse strong expression was detected in the kidney. The enzyme expressed in CHO cells preferentially acted on mannose-linked GlcNAc, while a core 2 mucin-type oligosaccharide and an N-acetyllactosamine oligomer also served as acceptors. The distribution and the specificity of GlcNAc6ST are different from those of GlcNAc6STs identified previously.  相似文献   

15.
The development of the humoral anti-glycan immune response of chimpanzees, either or not vaccinated with radiation-attenuated Schistosoma mansoni cercariae, was followed during 1 year after infection with S. mansoni. During the acute phase of infection both the vaccinated and the control chimpanzees produce high levels of immunoglobulin G (IgG) antibodies against carbohydrate structures that are characteristic for schistosomes carrying the Fucalpha1-3GalNAc and Fucalpha1-2Fucalpha1-3GlcNAc motifs, but not to the more widespread occurring structures GalNAcbeta1-4GlcNAc, GalNAcbeta1-4(Fucalpha1-3)GlcNAc, and Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis(x)). In addition, high levels of IgM antibodies were found against the trimeric Lewis(x) epitope. Apparently, the schistosome-characteristic carbohydrate structures are dominant epitopes in the anti-glycan humoral immune response of the chimpanzees. All chimpanzees showed an increase in the level of antibodies against most of the carbohydrate structures tested directly after vaccination, peaking at challenge time and during the acute phase of infection. With the exception of anti-F-LDN antibody responses, the anti-carbohydrate antibody responses upon schistosome infection of the vaccinated animals were muted in comparison to the control animals.  相似文献   

16.
Human alpha3-fucosyltransferases (Fuc-Ts) are known to convert N-acetyllactosamine to Galbeta1-4(Fucalpha1-3)GlcNAc (Lewis x antigen); some of them transfer fucose also to GalNAcbeta1-4GlcNAc, generating GalNAcbeta1-4(Fucalpha1-3)GlcNAc determinants. Here, we report that recombinant forms of Fuc-TV and Fuc-TVI as well as Fuc-Ts of human milk converted chitin oligosaccharides of 2-4 GlcNAc units efficiently to products containing a GlcNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-4R determinant at the nonreducing terminus. The product structures were identified by mass spectrometry and nuclear magnetic resonance experiments; rotating frame nuclear Overhauser spectroscopy data suggested that the fucose and the distal N-acetylglucosamine are stacked in the same way as the fucose and the distal galactose of the Lewis x determinant. The products closely resembled a nodulation factor of Mesorhizobium loti but were distinct from nodulation signals generated by NodZ-enzyme.  相似文献   

17.
Several N-acetyllactosamine (LacNAc) derivatives were tested as acceptors for alpha 1,3-L-fucosyltransferase present in human ovarian cancer sera and ovarian tumor. The enzyme of the soluble fraction of tumor was purified to apparent homogeneity by chromatography on bovine IgG glycopeptide-Sepharose followed by Sephacryl S-200 (M(r) < 67,000). As compared with 2'-methyl LacNAc, 3'-sulfo LacNAc was about 5-fold more sensitive in measuring alpha 1,3-fucosyltransferase in sera (Km, 3'-sulfo LacNAc, 0.12 mM; 2'-methyl LacNAc, 6.67 mM). When ovarian cancer serum was the enzyme source, either the sulfate group or a sialyl moiety at C-3' of LacNAc enhanced the acceptor ability (341 and 242%, respectively), whereas the sulfate group at C-2' or C-6' reduced the activity (22-36%); sulfate at C-6 or fucose at C-2' increased the activity (172 and 253%). The beta-benzylation of the reducing end, in general, increased the activity 2-3-fold. The enzyme of the soluble fraction of tumor exhibited more activity toward 3'-sulfo LacNAc (447%), 2'-fucosyl-LacNAc (436%), and 6-sulfo LacNAc (272%). Very low activity was observed with 3'-sialyl LacNAc (12.4%), 2'-sulfo LacNAc (33%), and 6'-sulfo LacNAc (5%); Fuc alpha 1,2Gal beta 1,3GlcNAc beta-O-p-nitrophenyl (166%), 2-methyl Gal beta 1,3GlcNAc beta-O-benzyl (204%), and 3-sulfo Gal beta 1,3GlcNAc (415%) also acted as acceptors, indicating the coexistence of alpha 1,3- and alpha 1,4-fucosyltransferase. The tumor particulate enzyme behaved entirely different, exhibiting low activity with 3'-sulfo LacNAc (39%) and 2'-fucosyl-LacNAc (148%); 3'-sialyl, 6'-sulfo, 6-sulfo, or 2'-sulfo LacNAc were 3, 43, 53, and 10% active, respectively. Thus, the ovarian cancer serum alpha 1,3-fucosyltransferase acts equally well on H-type 2,3'-sialyl LacNAc and 3'-sulfo LacNAc, but not on H-type 1. The enzyme of soluble tumor fraction acts on H-type 2,3'-sulfo LacNAc as well as H-type 1 but poorly on 3'-sialyl LacNAc. The tumor particulate enzyme acts on H-type 2 but poorly on 3'-sulfo or 3'-sialyl LacNAc and is inactive with H-type 1. When normal serum was examined with synthetic acceptors, > 80% activity was found as alpha 1,2-fucosyltransferase and the rest as alpha 1,3-fucosyltransferase. A screening of 21 ovarian cancer and 3 normal sera (3'-sulfo LacNAc as acceptor) showed 17-572% increase (average increase, 188%) of alpha 1,3-fucosyltransferase activity in cancer.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
N-Acetylglucosamine-6-O-sulfotransferase (GlcNAc6ST) catalyzes the transfer of sulfate from adenosine 3'-phosphate,5'-phosphosulfate to the C-6 position of the non-reducing GlcNAc. Three human GlcNAc6STs, namely GlcNAc6ST-1, GlcNAc6ST-2 (HEC-GlcNAc6ST), and GlcNAc6ST-3 (I-GlcNAc6ST), were produced as fusion proteins to protein A, and their substrate specificities as well as their enzymological properties were determined. Both GlcNAc6ST-1 and GlcNAc6ST-2 efficiently utilized the following oligosaccharide structures as acceptors: GlcNAcbeta1-6[Galbeta1-3]GalNAc-pNP (core 2), GlcNAcbeta1-6ManOMe, and GlcNAcbeta1-2Man. The ratios of activities to these substrates were not significantly different between the two enzymes. However, GlcNAc6ST-2 but not GlcNAc6ST-1 acted on core 3 of GlcNAcbeta1-3GalNAc-pNP. GlcNAc6ST-3 used only the core 2 structure among the above mentioned oligosaccharide structures. The ability of GlcNAc6ST-1 to sulfate core 2 structure as efficiently as GlcNAc6ST-2 is consistent with the view that GlcNAc6ST-1 is also involved in the synthesis of l-selectin ligand. Indeed, cells doubly transfected with GlcNAc6ST-1 and fucosyltransferase VII cDNAs supported the rolling of L-selectin-expressing cells. The activity of GlcNAc6ST-2 on core 3 and its expression in mucinous adenocarcinoma suggested that this enzyme corresponds to the sulfotransferase, which is specifically expressed in mucinous adenocarcinoma (Seko, A., Sumiya, J., Yonezawa, S., Nagata, K., and Yamashita, K. (2000) Glycobiology 10, 919-929).  相似文献   

19.
L-selectin mediates lymphocyte homing by facilitating lymphocyte adhesion to addressins expressed in the high endothelial venules (HEV) of secondary lymphoid organs. Peripheral node addressin recognized by the MECA-79 antibody is apparently part of the L-selectin ligand, but its chemical nature has been undefined. We now identify a sulfated extended core1 mucin-type O-glycan, Gal beta 1-->4(sulfo-->6)GlcNAc beta 1-->3Gal beta 1-->3GalNAc, as the MECA-79 epitope. Molecular cloning of a HEV-expressed core1-beta 1,3-N-acetylglucosaminyltransferase (Core1-beta 3GlcNAcT) enabled the construction of the 6-sulfo sialyl Lewis x on extended core1 O-glycans, recapitulating the potent L-selectin-mediated, shear-dependent adhesion observed with novel L-selectin ligands derived from core2 beta1,6-N-acetylglucosaminyltransferase-I null mice. These results identify Core1-beta 3GlcNAcT and its cognate extended core1 O-glycans as essential participants in the expression of the MECA-79-positive, HEV-specific L-selectin ligands required for lymphocyte homing.  相似文献   

20.
L-selectin, a leukocyte adhesion molecule, plays a central role in lymphocyte homing to secondary lymphoid tissue and to certain sites of inflammation. Carbohydrate sulfation was implicated in this process, when it was demonstrated that carbohydrate sulfotransferase-mediated sulfation of N-acetylglucosamine (GlcNAc) within sialyl Lewis X of cognate endothelial ligands for L-selectin was an essential modification for L-selectin binding. The recently identified GlcNAc-6-sulfotransferases GlcNAc6ST-1 and -2, which facilitate GlcNAc sulfation by catalyzing the transfer of a sulfonyl group from 3(')-phosphoadenosine 5(')-phosphosulfate (PAPS) to the 6-hydroxy group of the acceptor GlcNAc moiety, contribute to the biosynthesis of the 6-sulfosialyl Lewis X motif. Due to their pivotal role in L-selectin ligand biosynthesis, this enzyme class has recently emerged as an important and relatively unexplored class of potential targets for anti-inflammatory therapy. However, no inhibitors have been reported to date and screening for lead inhibitors has been hampered by the lack of simple assay formats suitable for high-throughput screening. Here, we report the development of a simple homogeneous in vitro sulfotransferase assay using a newly synthesized biotinylated glycoside as a substrate. The assay is based on GlcNAc6ST-2-mediated [35S]sulfate transfer from [35S]PAPS to the biotinylated glycoside and subsequent detection using streptavidin-coated SPA beads. K(m) values with partially purified GlcNAc6ST-2 for PAPS and the biotinylated glycoside were estimated to be 8.4 and 34.5 microM, respectively. The sulfotransferase reaction could be inhibited by 3('),5(')-ADP with an IC(50) of 2.1 microM. The assay can be operated in 384-well format; is characterized by a high signal-to-noise ratio, low variation, and excellent Z factors; and is highly suitable for high-throughput screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号