首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Asian citrus psyllid, Diaphorina citri, is a major pest of citrus and vector of citrus greening (huanglongbing) in Asian. In our field‐collected psyllid samples, we discovered that Fuzhou (China) and Faisalabad (Pakistan), populations harbored an obligate primary endosymbiont Candidatus Carsonella (gen. nov.) with a single species, Candidatus Carsonella ruddii (sp. nov.) and a secondary endosymbiont, Wolbachia surface proteins (WSP) which are intracellular endosymbionts residing in the bacteriomes. Responses of these symbionts to different temperatures were examined and their host survival assessed. Diagnostic PCR assays showed that the endosymbionts infection rates were not significantly reduced in both D. citri populations after 24 h exposure to cold or heat treatments. Although quantitative PCR assays showed significant reduction of WSP relative densities at 40°C for 24 h, a substantial decrease occurred as the exposure duration increased beyond 3 days. Under the same temperature regimes, Ca. C. ruddii density was initially less affected during the first exposure day, but rapidly reduced at 3–5 days compared to WSP. However, the mortality of the psyllids increased rapidly as exposure time to heat treatment increased. The responses of the two symbionts to unfavorable temperature regimes highlight the complex host‐symbionts interactions between D. citri and its associated endosymbionts.  相似文献   

2.
‘Candidatus Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease, is transmitted by Diaphorina citri, the Asian citrus psyllid. Interactions among D. citri and its microbial endosymbionts, including ‘Candidatus Profftella armatura’, are likely to impact transmission of CLas. We used quantitative mass spectrometry to compare the proteomes of CLas(+) and CLas(-) populations of D. citri, and found that proteins involved in polyketide biosynthesis by the endosymbiont Profftella were up-regulated in CLas(+) insects. Mass spectrometry analysis of the Profftella polyketide diaphorin in D. citri metabolite extracts revealed the presence of a novel diaphorin-related polyketide and the ratio of these two polyketides was changed in CLas(+) insects. Insect proteins differentially expressed between CLas(+) and CLas(-) D. citri included defense and immunity proteins, proteins involved in energy storage and utilization, and proteins involved in endocytosis, cellular adhesion, and cytoskeletal remodeling which are associated with microbial invasion of host cells. Insight into the metabolic interdependence between the insect vector, its endosymbionts, and the citrus greening pathogen reveals novel opportunities for control of this disease, which is currently having a devastating impact on citrus production worldwide.  相似文献   

3.
Historically it has been difficult to study the evolution of bacterial small RNAs (sRNAs) across distantly related species. For example, identifying homologs of sRNAs is often difficult in genomes that have undergone multiple structural rearrangements. Also, some types of regulatory sRNAs evolve at rapid rates. The high degree of genomic synteny among divergent host-restricted bacterial lineages, including intracellular symbionts, is conducive to sRNA maintenance and homolog identification. In turn, symbiont genomes can provide us with novel insights into sRNA evolution. Here, we examine the sRNA expression profile of the obligate symbiont of psyllids, Carsonella ruddii, which has one of the smallest cellular genomes described. Using RNA-seq, we identified 36 and 32 antisense sRNAs (asRNAs) expressed by Carsonella from the psyllids Bactericera cockerelli (Carsonella-BC) and Diaphorina citri (Carsonella-DC), respectively. The majority of these asRNAs were associated with genes that are involved in essential amino acid biosynthetic pathways. Eleven of the asRNAs were conserved in both Carsonella lineages and the majority were maintained by selection. Notably, five of the corresponding coding sequences are also the targets of conserved asRNAs in a distantly related insect symbiont, Buchnera. We detected differential expression of two asRNAs for genes involved in arginine and leucine biosynthesis occurring between two distinct Carsonella-BC life stages. Using asRNAs identified in Carsonella, Buchnera, and Profftella which are all endosymbionts, and Escherichia coli, we determined that regions upstream of these asRNAs encode unique conserved patterns of AT/GC richness, GC skew, and sequence motifs which may be involved in asRNA regulation.  相似文献   

4.
5.
We investigated the interactions between the endosymbionts Wolbachia pipientis strain wMel and Spiroplasma sp. strain NSRO coinfecting the host insect Drosophila melanogaster. By making use of antibiotic therapy, temperature stress, and hemolymph microinjection, we established the following strains in the same host genetic background: the SW strain, infected with both Spiroplasma and Wolbachia; the S strain, infected with Spiroplasma only; and the W strain, infected with Wolbachia only. The infection dynamics of the symbionts in these strains were monitored by quantitative PCR during host development. The infection densities of Spiroplasma exhibited no significant differences between the SW and S strains throughout the developmental course. In contrast, the infection densities of Wolbachia were significantly lower in the SW strain than in the W strain at the pupal and young adult stages. These results indicated that the interactions between the coinfecting symbionts were asymmetrical, i.e., Spiroplasma organisms negatively affected the population of Wolbachia organisms, while Wolbachia organisms did not influence the population of Spiroplasma organisms. In the host body, the symbionts exhibited their own tissue tropisms: among the tissues examined, Spiroplasma was the most abundant in the ovaries, while Wolbachia showed the highest density in Malpighian tubules. Strikingly, basically no Wolbachia organisms were detected in hemolymph, the principal location of Spiroplasma. These results suggest that different host tissues act as distinct microhabitats for the symbionts and that the lytic process in host metamorphosis might be involved in the asymmetrical interactions between the coinfecting symbionts.  相似文献   

6.
7.
Wolbachia is a symbiont intensively studied due to its ability to interfere with their host’s reproduction, and it has been recently proposed as an alternative tool to control insect pests or vectors of diseases. The Asian citrus psyllid Diaphorina citri is an important pest of citrus since it vectors the bacterium that causes the "Huanglongbing" disease in citrus. The frequency and diversity of Wolbachia associated with D. citri is unknown, limiting the utilization of Wolbachia as an alternative strategy for insect management. Thus, we aimed to determine the natural rate of infection, to characterize the Wolbachia strains associated with this psyllid by "multilocus sequencing typing” (MLST) and wsp analysis, and to verify the association of the symbiont to particular genotypes of the host. Analysis indicated Wolbachia infects 100 % of all specimens tested from all 15 sampled populations. MLST revealed the occurrence of five new sequence types (STs) of Wolbachia, while analysis based on the wsp sequences indicated only four different types of Wolbachia. ST-173 was predominant, while the remaining STs were population specific. Analysis of the host–symbiont relationship did not reveal any particular association of Wolbachia and haplotypes or a decrease in nucleotide diversity of D. citri in populations in which more than one ST was recorded. The consequences of the diversity of STs reported are still unknown, but the fact that Wolbachia infection is fixed and that there is one ST with a broad distribution highlights the use of this symbiont as an alternative strategy to control D. citri.  相似文献   

8.
Whereas endosymbiont-induced incompatibility is known to occur in various arthropod taxa, such as spider mites, insects and isopods, it has been rarely reported in plant-inhabiting predatory mites (Acari: Phytoseiidae). Recent cross-breeding studies with the phytoseiid mite Neoseiulus paspalivorus De Leon revealed a complete post-mating reproductive isolation between specimens collected from three geographic origins—Northeast Brazil (South America), Benin and Ghana (West Africa)—even though they are morphologically similar. We carried out a study to assess to what extent these populations exhibit genetic differences and whether endosymbionts are involved in the incompatibility. First, we used the mitochondrial cytochrome oxidase I (COI) gene to assess genetic diversity among the three populations. Second, we used a PCR-based method to check for the presence of Wolbachia and/or Cardinium in these populations, and we determined their phylogenetic relationships using specific primers for Wolbachia and Cardinium 16S rDNA genes. Third, we also conducted a test using an antibiotic (tetracycline) in an attempt to eliminate the symbionts and evaluate their effects on the reproductive compatibility of their host. Based on the DNA sequences of their COI genes, specimens of the three populations appear to be genetically similar. However, the 16S rDNA gene sequences of their associated endosymbionts differed among the three populations: the Benin and Brazil populations harbour different strains of Wolbachia symbionts, whereas the Ghana population harbours Cardinium symbionts. In response to antibiotic treatment females of each of the three populations became incompatible with untreated males of their own population, similar to that observed in crossings between females from one geographic population and males from another. Compatibility was restored in crosses involving uninfected Brazil females and uninfected Benin males, whereas the reciprocal crosses remained incompatible. Cardinium symbionts seem to be essential for oviposition in the Ghana population. It is concluded that their associated bacterial symbionts are the cause of the post-mating reproductive isolation previously observed among the three geographic populations. This insight is relevant to biological control of coconut mites for which N. paspalivorus is an effective predator, because introducing one geographic strain into the population of another (e.g. in field releases or mass cultures) may cause population growth depression.  相似文献   

9.
While many endosymbionts have beneficial effects on hosts under specific ecological conditions, there can also be associated costs. In order to maximize their own fitness, hosts must facilitate symbiont persistence while preventing symbiont exploitation of resources, which may require tight regulation of symbiont populations. As a host ages, the ability to invest in such mechanisms may lessen or be traded off with demands of other life history traits, such as survival and reproduction. Using the pea aphid, Acyrthosiphon pisum, we measured survival, lifetime fecundity, and immune cell counts (hemocytes, a measure of immune capacity) in the presence of facultative secondary symbionts. Additionally, we quantified the densities of the obligate primary bacterial symbiont, Buchnera aphidicola, and secondary symbionts across the host''s lifetime. We found life history costs to harboring some secondary symbiont species. Secondary symbiont populations were found to increase with host age, while Buchnera populations exhibited a more complicated pattern. Immune cell counts peaked at the midreproductive stage before declining in the oldest aphids. The combined effects of immunosenescence and symbiont population growth may have important consequences for symbiont transmission and maintenance within a host population.  相似文献   

10.
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host–symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus‐specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell‐autonomous, these effects are likely to affect the virus‐blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host–symbiont–virus‐dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.  相似文献   

11.
Ocean warming and other anthropogenic stresses threaten the symbiosis between tropical reef cnidarians and their dinoflagellate endosymbionts (Symbiodinium). Offspring of many cnidarians acquire their algal symbionts from the environment, and such flexibility could allow corals to respond to environmental changes between generations. To investigate the effect of both habitat and host genotype on symbiont acquisition, we transplanted aposymbiotic offspring of the common Caribbean octocoral Briareum asbestinum to (1) an environmentally different habitat that lacked B. asbestinum and (2) an environmentally similar habitat where local adults harbored Symbiodinium phylotypes that differed from parental colonies. Symbiont acquisition and establishment of symbioses over time was followed using a within-clade DNA marker (23S chloroplast rDNA) and a within-phylotype marker (unique alleles at a single microsatellite locus). Early in the symbiosis, B. asbestinum juveniles harbored multiple symbiont phylotypes, regardless of source (parent or site). However, with time (~4 yr), offspring established symbioses with the symbiont phylotype dominant in the parental colonies, regardless of transplant location. Within-phylotype analyses of the symbionts revealed a similar pattern, with offspring acquiring the allelic variant common in symbionts in the parental population regardless of the environment in which the offspring was reared. These data suggest that in this host species, host–symbiont specificity is a genetically determined trait. If this level of specificity is widespread among other symbiotic cnidarians, many cnidarian–algal symbioses may not be able to respond to rapid, climate change-associated environmental changes by means of between-generation switching of symbionts.  相似文献   

12.
《Journal of Asia》2022,25(2):101884
The Asian citrus psyllid (Diaphorina citri) is a major pest of the citrus industry and is also the vector for Candidatus Liberibacter asiaticus (CLas), a destructive Huanglongbing (HLB) disease of citrus trees. Insect endosymbionts and gut bacteria play important roles in vector-pathogen interactions and host immunity. Thus, our aim was to evaluate the correlation between CLas infection and the microbiome in D. citri by conducting 16S rRNA amplification sequencing on insects successfully and unsuccessfully infected with CLas (CLas-infected and non-infected). Genera Candidatus Profftella, Wolbachia, and Candidatus Carsonella were highly abundant genera in all tested samples. Compared with the non-infected and control groups, CLas-infected samples harboured more observed OTUs and showed higher alpha diversity metrics. Principal coordinate analysis based on beta-diversity metrics indicated two distinct clusters between the CLas-infected samples and non-infected/control samples. Subsequent LEfSe analysis revealed that Candidatus Profftella was more abundant in the non-infected group than in the control and CLas-infected groups. The interaction network also indicated a co-exclusion relationship between Candidatus Profftella and CLas, while CLas co-existed with Wolbachia, several Enterobacteriaceae spp., and multiple other bacteria. Our study provides insight into the interaction between the microbiome community in D. citri and CLas, which can facilitate the management of this pest and its associated pathogen.  相似文献   

13.
Microbiome analysis in a host–parasitoid interaction network was conducted to compare the taxonomic composition of bacterial communities of Diaphornia citri, Tamarixia radiata, and Diaphorencyrtus aligarhensis. The comparative analysis revealed differences in the composition and diversity of the symbiont populations across the host and its associated parasitoids. Proteobacteria was the most dominant phylum, representing 67.80% of the total bacterial community, while Candidatus Profftella armature and Wolbachia were the dominant genera across the host and parasitoids. There were clear differences observed in alpha and beta diversity of microbiota through the host and its associated parasitoids. The function prediction of bacterial communities and Pearson correlation analysis showed that specific bacterial communities displayed positive correlations with the carbohydrate metabolism pathway. Furthermore, when symbiotic bacteria were eliminated using a broad-spectrum antibiotic, tetracycline hydrochloride, the parasitoids' median survival time and longevity were significantly reduced. We confirmed the physiological effects of symbiotic bacteria on the fitness of parasitoids and demonstrated the effect of antibiotics in decreasing the food intake and measurement of amino acids in the hemolymph. This study sheds light on basic information about the mutualism between parasitoids and bacteria, which may be a potential source for biocontrol strategies for citrus psyllid, especially D. citri.  相似文献   

14.
Legume crops in Central India, the main soybean production area of the country, may suffer from yellow mosaic disease caused by the Mungbean yellow mosaic India virus (MYMIV). MYMIV is transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), which is a species complex composed of various genetic groups. This vector species harbors different endosymbionts among regional strains and among individuals. To elucidate fundamental aspects of this virus vector in the state of Madhya Pradesh, the infection status of the symbionts and the virus in whiteflies was studied. A polymerase chain reaction (PCR) survey of the whiteflies collected in Madhya Pradesh found four secondary endosymbionts, Arsenophonus, Hemipteriphilus, Wolbachia, and Cardinium, in addition to the primary endosymbiont Portiera. Arsenophonus and Hemipteriphilus were highly infected but the infection rates of Wolbachia and Cardinium were low. MYMIV was detected in whitefly populations collected from various host plants in Madhya Pradesh. The whitefly populations belonged to the Asia I and II genetic groups; several different Asia II populations were also distributed. Specific relations were not observed among symbiont infection status, virus infection, and the whitefly genetic groups in the populations of Madhya Pradesh, though Cardinium was highly detected in the Asia II-1 group. New primers, which can be used for PCR template validation and for discriminating two phylogenetically close endosymbionts, were designed.  相似文献   

15.
Beneficial eukaryotic–bacterial partnerships are integral to animal and plant evolution. Understanding the density regulation mechanisms behind bacterial symbiosis is essential to elucidating the functional balance between hosts and symbionts. Citrus mealybugs, Planococcus citri (Risso), present an excellent model system for investigating the mechanisms of symbiont density regulation. They contain two obligate nutritional symbionts, Moranella endobia, which resides inside Tremblaya princeps, which has been maternally transmitted for 100–200 million years. We investigate whether host genotype may influence symbiont density by crossing mealybugs from two inbred laboratory‐reared populations that differ substantially in their symbiont density to create hybrids. The density of the M. endobia symbiont in the hybrid hosts matched that of the maternal parent population, in keeping with density being determined either by the symbiont or the maternal genotype. However, the density of the T. princeps symbiont was influenced by the paternal host genotype. The greater dependency of T. princeps on its host may be due to its highly reduced genome. The decoupling of T. princeps and M. endobia densities, in spite of their intimate association, suggests that distinct regulatory mechanisms can be at work in symbiotic partnerships, even when they are obligate and mutualistic.  相似文献   

16.
Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.  相似文献   

17.
Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.  相似文献   

18.
he Asian citrus psyllid Diaphorina citri is a notorious agricultural pest that transmits the phloem-inhabiting alphaproteobacterial ‘Candidatus Liberibacter asiaticus’ and allied plant pathogens, which cause the devastating citrus disease called Huanglongbing or greening disease. D. citri harbors two distinct bacterial mutualists in the symbiotic organ called bacteriome: the betaproteobacterium ‘Candidatus Profftella armatura’ in the syncytial cytoplasm at the center of the bacteriome, and the gammaproteobacterium ‘Candidatus Carsonella ruddii’ in uninucleate bacteriocytes. Here we report that a putative amino acid transporter LysE of Profftella forms a highly supported clade with proteins of L. asiaticus, L. americanus, and L. solanacearum. L. crescens, the most basal Liberibacter lineage currently known, lacked the corresponding gene. The Profftella-Liberibacter subclade of LysE formed a clade with proteins from betaproteobacteria of the order Burkholderiales, to which Profftella belongs. This phylogenetic pattern favors the hypothesis that the Liberibacter lineage acquired the gene from the Profftella lineage via horizontal gene transfer (HGT) after L. crescens diverged from other Liberibacter lineages. K A/K S analyses further supported the hypothesis that the genes encoded in the Liberibacter genomes are functional. These findings highlight the possible evolutionary importance of HGT between plant pathogens and their insect vector’s symbionts that are confined in the symbiotic organ and seemingly sequestered from external microbial populations.  相似文献   

19.
Heritable symbionts have diverse effects on the physiology, reproduction and fitness of their hosts. Maternally transmitted Wolbachia are one of the most common endosymbionts in nature, infecting about half of all insect species. We test the hypothesis that Wolbachia alter host behaviour by assessing the effects of 14 different Wolbachia strains on the locomotor activity of nine Drosophila host species. We find that Wolbachia alter the activity of six different host genotypes, including all hosts in our assay infected with wRi-like Wolbachia strains (wRi, wSuz and wAur), which have rapidly spread among Drosophila species in about the last 14 000 years. While Wolbachia effects on host activity were common, the direction of these effects varied unpredictably and sometimes depended on host sex. We hypothesize that the prominent effects of wRi-like Wolbachia may be explained by patterns of Wolbachia titre and localization within host somatic tissues, particularly in the central nervous system. Our findings support the view that Wolbachia have wide-ranging effects on host behaviour. The fitness consequences of these behavioural modifications are important for understanding the evolution of host–symbiont interactions, including how Wolbachia spread within host populations.  相似文献   

20.
We investigated previously unknown associations between bacterial endosymbionts and bat flies of the subfamily Nycterophiliinae (Diptera, Streblidae). Molecular analyses revealed a novel clade of Gammaproteobacteria in Nycterophilia bat flies. This clade was not closely related to Arsenophonus-like microbes found in its sister genus Phalconomus and other bat flies. High population infection rates in Nycterophilia across a wide geographic area, the presence of the symbionts in pupae, the general codivergence between hosts and symbionts, and high AT composition bias in symbiont genes together suggest that this host-symbiont association is obligate in nature and ancient in origin. Some Nycterophilia samples (14.8%) also contained Wolbachia supergroup F (Alphaproteobacteria), suggesting a facultative symbiosis. Likelihood-based ancestral character mapping revealed that, initially, obligate symbionts exhibited association with host-specific Nycterophilia bat flies that use a broad temperature range of cave environments for pupal development. As this mutualism evolved, the temperature range of bat flies narrowed to an exclusive use of hot caves, which was followed by a secondary broadening of the bat flies'' host associations. These results suggest that the symbiosis has influenced the environmental tolerance of parasite life history stages. Furthermore, the contingent change to an expanded host range of Nycterophilia bat flies upon narrowing the ecological niche of their developmental stages suggests that altered environmental tolerance across life history stages may be a crucial factor in shaping parasite-host relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号