首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the soil seed bank composition in four old fields of different ages, after abandonment from agriculture. Complete seed bank composition was assessed by direct seed separation from soil samples and identification to species. Most species found in the seed bank were not important in the present seral communities. Seed of the species that dominated the early succession were generally not found. Additionally, there were very few propagules rather than on the germination of in situ propagules. We suggest that pampean grasses evolved under that the course of post-agricultural succession will depend strongly on the pattern of arrival of exogenous propagules rather than the germination of in situ propagules. We suggest that pampean grasses evolved under disturbances of low intensity and/or a disturbance regime dominated by small gaps, in which open areas could be rapidly colonized from the edges and/or by remnant vegetative propagules. The changes produced by the introduction of agriculture triggered the invasion by exotic species adapted to the new disturbance regime.  相似文献   

2.
We used data from a 15-year experiment in a C4-dominated grassland to address the effects of community structure (i.e., plant species richness, dominance) and disturbance on invasibility, as measured by abundance and richness of exotic species. Our specific objectives were to assess the temporal and spatial patterns of exotic plant species in a native grassland in Kansas (USA) and to determine the factors that control exotic species abundance and richness (i.e., invasibility). Exotic species (90% C3 plants) comprised approximately 10% of the flora, and their turnover was relatively high (30%) over the 15-year period. We found that disturbances significantly affected the abundance and richness of exotic species. In particular, long-term annually burned watersheds had lower cover of exotic species than unburned watersheds, and fire reduced exotic species richness by 80–90%. Exotic and native species richness were positively correlated across sites subjected to different fire (r = 0.72) and grazing (r = 0.67) treatments, and the number of exotic species was lowest on sites with the highest productivity of C4 grasses (i.e., high dominance). These results provide strong evidence for the role of community structure, as affected by disturbance, in determining invasibility of this grassland. Moreover, a significant positive relationship between exotic and native species richness was observed within a disturbance regime (annually burned sites, r = 0.51; unburned sites, r = 0.59). Thus, invasibility of this C4-dominated grassland can also be directly related to community structure independent of disturbance. Received: 9 February 1999 / Accepted: 12 May 1999  相似文献   

3.
Early emergence of plant seedlings can offer strong competitive advantages over later-germinating neighbors through the preemption of limiting resources. This phenomenon may have contributed to the persistent dominance of European annual grasses over native perennial grasses in California grasslands, since the former species typically germinate earlier in the growing season than the latter and grow rapidly after establishing. Recently, European perennial grasses have been spreading into both non-native annual and native perennial coastal grass stands in California. These exotic perennials appear to be less affected by the priority effects arising from earlier germination by European annual grasses. In addition, these species interactions in California grasslands may be mediated by increasing anthropogenic or natural soil nitrogen inputs. We conducted a greenhouse experiment to test the effects of order of emergence and annual grass seedling density on native and exotic perennial grass seedling performance across different levels of nitrogen availability. We manipulated the order of emergence and density of an exotic annual grass (Bromus diandrus) grown with either Nassella pulchra (native perennial grass), Festuca rubra (native perennial grass), or Holcus lanatus (exotic perennial grass), with and without added nitrogen. Earlier B. diandrus emergence and higher B. diandrus density resulted in greater reduction in the aboveground productivity of the perennial grasses. However, B. diandrus suppressed both native perennials to a greater extent than it did H. lanatus. Nitrogen addition had no effect on the productivity of native perennials, but greatly increased the growth of the exotic perennial H. lanatus, grown with B. diandrus. These results suggest that the order of emergence of exotic annual versus native perennial grass seedlings could play an important role in the continued dominance of exotic annual grasses in California. The expansion of the exotic perennial grass H. lanatus in coastal California may be linked to its higher tolerance of earlier-emerging annual grasses and its ability to access soil resources amidst high densities of annual grasses.  相似文献   

4.
5.
Abstract Fire and grazing are important factors in the regulation of the grassland structure of the Flooding Pampa (Buenos Aires Province, Argentina dominated by Paspalum quadrifarium plants (henceforth ‘pajonal’)). Winter burning of pajonal is a practice that increases P. quadrifarium growth and its nutritious value for cattle. The objective of this work was to determine the responses of different demographic variables of P. quadrifarium growing in a grassland managed with different fire frequencies. The work was carried out in a pajonal situated in San Ignacio (Ayacucho county, Buenos Aires Province, Argentina). The treatments were: high fire frequency (0.8 fires per year) and low fire frequency (0.4 fires per year). The population of P. quadrifarium was affected by fire frequency. Biomass, number of tillers, and the relative production of tillers per plant did not change with fire frequency. Plant height was negatively affected by fire frequency. Whereas no plant mortality was observed in high fire frequency, 30% of the mature plants died at the end of the experiment in low fire frequency. In both treatments, plant mortality was size‐dependent and juvenile plants were more affected than mature ones. Burning had an immediate negative effect on mature and juvenile plants in terms of fecundity, survival of tillers and basal cover. Tiller survival and fecundity were significantly lower in burned plants than in unburned ones. In the high fire frequency treatment the number of ramets and/or genets and basal cover were greater than in the low fire frequency treatment.  相似文献   

6.
Identifying the mechanisms and interactions that influence the spatial structure of vegetation is important for both scientific and practical purposes. Grazing is one of the most fundamental interactions in ecology but so far its effect on vegetation spatial pattern received little attention. In this study we propose a conceptual model that can be used to predict the effect of grazing on shrub spatial pattern in water-limited ecosystems where shrubs grow within a matrix of annual vegetation. According to the model, grazing may increase or decrease clumping in shrub distribution, depending on (1) the relative palatability of shrubs vs. annual plants to the herbivores, and (2) the manner (negative or positive) by which adult shrubs and annual plants affect the establishment of shrub seedlings. We tested our model in a Mediterranean scrub ecosystem by analyzing the development of shrub spatial pattern over a period of 40 years in plots characterized by contrasting intensities of cattle grazing. As predicted by the model, all plots showed a clumped pattern of shrub distribution in the absence of cattle grazing while intense cattle grazing reduced the clumpiness of the vegetation and generated a more random pattern of shrub distribution. Interestingly, plots representing the two grazing regimes did not differ significantly in their shrub cover, suggesting that shrub spatial pattern may be more sensitive to grazing than overall shrub cover.  相似文献   

7.
如何通过合理的利用方式提高高寒草地管理水平,实现其可持续利用一直是草地生态学领域的研究热点。为明确不同放牧家畜组合下高寒草地植物群落关键种的演替规律及其驱动因素,基于中等放牧强度设置了不同放牧家畜组合放牧样地(牦牛单牧、藏羊单牧、牦牛藏羊1 : 2混牧、牦牛藏羊1 : 4混牧、牦牛藏羊1 : 6混牧)以及围封样地,并在连续放牧处理7年后系统分析了不同放牧家畜组合下植物群落特征与土壤理化性质变化,以期确定最优放牧组合。结果表明:(1)不同放牧家畜组合均会显著降低高寒草地植物盖度,但对其物种丰富度与多样性指数的影响并不显著。(2)牦牛藏羊1 : 2混牧下植物群落特征与禁牧处理下植物群落特征较为相似,且牦牛藏羊1 : 2混牧下的植物群落稳定性最强、组织水平最高。(3)牦牛单牧与1 : 2混牧下关键种为矮生嵩草;藏羊单牧下关键种为天山针茅;1 : 4混牧下关键种为星毛委陵菜;1 : 6混牧与围封下关键种为赖草。(4)围封能够显著降低土壤容重,藏羊单牧则会显著增加土壤容重与土壤速效氮、磷含量。(5)土壤速效氮、容重与含水量是驱动不同放牧家畜组合下植物群落关键种演替的重要理化因子。综上所述,中等放牧强度下,牦牛藏羊1 : 2混牧是青藏高原高寒草地较为理想的利用方式。此外,相较于单纯增加草地物种丰富度或多样性,建立植物群落物种之间的有效关联是提高青藏高原高寒草地管理水平的另一关键途径。  相似文献   

8.
Determining how ecological communities will respond to global environmental change remains a challenging research problem. Recent meta‐analyses concluded that most communities are undergoing compositional change despite no net change in local species richness. We explored how species richness and composition of co‐occurring plant, grasshopper, breeding bird and small mammal communities in arid and mesic grasslands changed in response to increasing aridity and fire frequency. In the arid system, grassland and shrubland plant and breeding bird communities were undergoing directional change, whereas grasshopper and small mammal communities were stable. In the mesic system, all communities were undergoing directional change regardless of fire frequency. Despite directional change in composition in some communities, species richness of all communities did not change because compositional change resulted more from reordering of species abundances than turnover in species composition. Thus, species reordering, not changes in richness, explains long‐term dynamics in these grass and shrub dominated communities.  相似文献   

9.
Structural aspects of the shortgrass steppe plant community, functional groups, and species populations were examined in response to long-term heavy grazing and exclosure from grazing, contiguous wet or dry years, and an environmental gradient of topography. Of the three factors, relatively greater differences in community similarity were observed between catena positions, particularly on the ungrazed treatments. Grazing was intermediate between catena position and short-term weather in shaping plant community structure. Grazed treatments and ridgetops had a less variable species composition through fluctuations in weather.An increase with grazing of the dominant, heavily grazed species was observed. Basal cover and density of total species was also greater on grazed sites. The more uniform grazing lawn structure of the grazed plant communities had an influence on segregation of plant populations along topographical gradients. Segregation was less on grazed catenas, but diversity and the abundance of introduced and opportunistic-colonizer species was also less.Although the shortgrass steppe community was relatively invariant, less abundant species were dynamic and interactions occurred with respect to grazing, weather, and catena position. The effects of grazing may be mitigated by favorable growing seasons but magnified in unfavorable years in populations that are adapted to favorable sites. Grazing can be considered a disturbance at the level of the individual but it may or may not be a disturbance at the level of the population, and it is not a disturbance at the level of the community in this particular grassland.  相似文献   

10.
Abstract. Previous studies have demonstrated relationships between spatial scale and spatial pattern and developed general hypotheses of scaling effects. Few studies, however, have examined the interactive relationship between scale and pattern-driving processes such as grazing. The goal of this study is to evaluate scale-dependent patterns across three spatial scales for three grazing intensities over 45 yr and to identify some mechanisms that may be associated with scale related differences. Correlation analysis and analysis of the coefficients of variation indicate that the relationships between units are dependent upon spatial scale and treatment. Across all grazing treatments, the relationship between units of the same scale becomes stronger as the spatial scale is increased. However, the rate of increase in the correlation coefficient is different for each treatment. The coefficient of variation responded inversely across scales with the greatest variation between small-scale units and little difference between the intermediate- and large scales. In addition to different relationships between units at each scale, differences in heterogeneity within treatments over time is illustrated by the relationship between small-scale units within each treatment and their associated larger scale units. The strongest relationship occurred in the heavily grazed treatments where correlation coefficients of small-scale units with intermediate- and large-scale units were ca. 0.60, indicating similar dynamics across scales. For the moderately grazed and ungrazed treatments this relationship varied from 0.40 to 0.47. Results from this study suggest that grazing alters scaling effects. Variability between small-scale units was greatest in the ungrazed treatment which had greater heterogeneity and less predictability than grazed treatments because of the influence of grazing on plant morphology, demography and composition. At the intermediate scale, relationships between units were fairly similar with the least variation occurring in the moderately grazed treatment. Alternatively, variation between large-scale units was greatest in the moderately grazed treatment because of the relationship between rest cycles, weather patterns, and patch grazing. Therefore, grazing can have a positive, a negative, or no influence on heterogeneity between units depending upon the scale of observation. Evaluation of long-term dynamics across these treatments at the same small spatial scale results in different variances within each treatment which may violate assumptions of some statistical and experimental designs. Therefore, evaluations of temporal dynamics should consider scale relative to the relationship between plant size, density and longevity (relative scale).  相似文献   

11.
Abstract. We tested the following hypotheses forthe first five years of a grassland succession: (a) community changes are mainly directional and related to time after disturbance ratherthanto environmental fluctuations; (b) rates of succession decrease over time, and (c) plant communities in different plots converge on a similar composition within five years of succession. We tested those hypotheses using a Principal Components Analysis applied to data from four successional plots established in successive y ears in a large cropland in the Inland Pampa, Argentina. Community changes were correlated to the age of the plots, and unrelated to rainfall variability, a major environmental variable in grasslands. Successional rates were constant over the five years, probably because of the continued dominance of different annuals; we conclude that successional rates depend on the life history of the dominant species rather than on any emergent community property. We found no evidence of convergence ordivergence; we concluded that the results of successional studies may depend on the temporal and spatial scale of observation.  相似文献   

12.
Asymmetry in the competition abilities between invasive and native consumers can potentially influence the colonization success by invasive species. We tested whether a subsidy of allochthonous prey enhanced an asymmetric competition between invasive bluegill (Lepomis macrochirus) and two native cyprinid fish, that is, stone moroko (Pseudorasbora parva) and tamoroko (Gnathopogon elongatus elongatus). A field experiment was conducted using enclosures wherein the strength of interspecific competition and the presence/absence of allochthonous prey were manipulated. The experiment revealed that allochthonous prey alleviated the limitation of fish growths caused by a severe competition for aquatic prey resources. However, the importance of allochthonous prey differed considerably between invasive bluegill and the two native cyprinids. Individual bluegills grew faster when the allochthonous prey was supplied, whereas no difference in growth was observed in the two cyprinids whether or not allochthonous prey was supplied. Interestingly, the importance of allochthonous prey on the total amount of bluegill growth varied depending on the numerical abundance of native cyprinid competitors, and this importance increased when the native cyprinids were abundant. These findings indicated that allochthonous prey provides an asymmetric growth benefit to invasive bluegills over the two native cyprinids by alleviating asymmetrically the competition strength in a Japanese pond, especially under the conditions of severe interspecific resource competition and a limitation in the utilization of in situ prey resources.  相似文献   

13.
Abstract. The effects of grazing, physical disturbance, interspecific competition, and fire on populations of individual species and on the structure and diversity of grassland communities were investigated in short-, mid-, and tall-grasslands in the Serengeti National Park, Tanzania. The treatments included deep and shallow artificial disturbances, early dry-season burning, and removal of dominant grass species from 2m2 plots located inside and outside of large-mammal-proof exclosures. Species-cover data were collected for five years and analyzed by analysis of variance and diversity indices. In all three communities, protection from grazing and physical disturbance had greater impacts on species cover and diversity than removal of dominant species or fire. More species were significantly affected (positively and negatively) by disturbance and protection from grazing (50 - 100%) than by species removals and fire (< 41%). In most cases, the cover of tall, perennial species increased following protection from grazing while the cover of annual and short, perennial species decreased. Over the five years of the study, vegetatively reproducing species benefited more than sexually reproducing species from protection from grazing, and tall rhizomatous species benefited more than tall stoloniferous species. Disturbance caused annual and short perennial species to increase and tall perennials to decrease in cover. Following species removals, tall species were either unaffected or they increased in cover while some short species increased and others decreased in cover. Species diversity in two of the three communities decreased when the communities were protected from grazing but increased when disturbed, when dominant species were removed, and when burned.  相似文献   

14.

Background and aims

Exotic species, nitrogen (N) deposition, and grazing are major drivers of change in grasslands. However little is known about the interactive effects of these factors on below-ground microbial communities.

Methods

We simulated realistic N deposition increases with low-level fertilization and manipulated grazing with fencing in a split-plot experiment in California’s largest serpentine grassland. We also monitored grazing intensity using camera traps and measured total available N to assess grazing and nutrient enrichment effects on microbial extracellular enzyme activity (EEA), microbial N mineralization, and respiration rates in soil.

Results

Continuous measures of grazing intensity and N availability showed that increased grazing and N were correlated with increased microbial activity and were stronger predictors than the categorical grazing and fertilization measures. Exotic cover was also generally correlated with increased microbial activity resulting from exotic-driven nutrient cycling alterations. Seasonal effects, on abiotic factors and plant phenology, were also an important factor in EEA with lower activity occurring at peak plant biomass.

Conclusions

In combination with previous studies from this serpentine grassland, our results suggest that grazing intensity and soil N availability may affect the soil microbial community indirectly via effects on exotic cover and associated changes in nutrient cycling while grazing directly impacts soil community function.  相似文献   

15.
The Flooding Pampa natural grassland has an intricate pattern of plant communities, related to small topographic differences that determine important changes in soil characteristics. Despite limitations imposed by soil properties and periodic waterlogging, opportunistic tilling is carried out to plant pastures. There is little information on how pasture planting may affect the structure of the grassland communities. In order to document changes caused by cultural activities on structural and functional characteristics of plant communities in this landscape, we made field surveys in grasslands and very old pastures (grassland communities recovered through secondary succession) using transects located across existing topographic gradients. The patchy structure of this landscape was revealed by the multivariate analysis, by means of which four plant communities could be identified in the natural grassland. Species composition of these communities differed from that of the corresponding old pastures. They lost an important number of exclusive species, but also gained species: some new to the landscape and many already present in other environments. Pasture planting reduced the rate of species replacements along the gradient and produced changes in patchiness, but had no effect on the species–area curve at the landscape scale. Neither did we find differences in total number of species, average number of species/site and proportion of functional types. The new grassland created by opportunistic pasture planting has developed into a structural gradient in which important differences occurred in the lower waterlogged-prone stands, whereas the sites of the other communities experienced less structural changes.  相似文献   

16.
Question: What is the most appropriate combination of treatments to reintroduce Nassella pulchra, a perennial bunchgrass, into degraded mediterranean coastal grasslands? Location: Central coast of California, USA. Methods: N. pulchra was sown from seeds and transplanted into a degraded grassland in a multi‐factorial experiment testing the effects of (1) two grazing intensities (lightly grazed by native mammal species or ungrazed); (2) topsoil removal and (3) reduction of plant neighbours. The experiment was carried out on two types of surrounding vegetation (exotic annual grasses and exotic forbs). Results: Topsoil removal greatly enhanced establishment from seeds and transplant survival, mainly because it reduced the exotic vegetation and thus reduced competition. While removing neighbours was essential when topsoil was left intact, it had a negative effect on N. pulchra when surrounding species included exotic forbs (Brassica spec, and Asteraceae) at low density (after topsoil removal). Moderate grazing by native mammals (deer, rabbits and gophers) did not affect N. pulchra. Conclusion: Our results suggest that seeding after topsoil has been removed is a promising method to reintroduce N. pulchra to highly degraded sites where there is little to no native seed bank.  相似文献   

17.
The patches of Paspalum quadrifarium-dominated grasslands found atpresent could be remnants of the vegetation that defined the Pampas landscape inthe past. The mere presence of such physical structures should lead to systemsin which many other species are dependent upon both the autogenic creation ofsurface area for living space and the autogenic and allogenic modulation ofresources controlled by these structures. We carried out amensurative–comparative study in naturally occurring sites dominated byP. quadrifarium that occupy different positions within thelandscape in the Flooding Pampa. We found different species assemblages in thesestructurally homogeneous stands, related to the edaphic and topographicgradients. The comparison with sites from similar positions in the landscapewhere this native tussock-grass was absent showed that the dominance ofP. quadrifarium is a minor determinant of floristicdifferences, which are mainly controlled by abiotic factors. We assigned thesedominated grassland stands to previously delimited vegetation units for theFlooding Pampa grasslands and we compared them with the vegetation unitsassigned, in terms of composite properties of the community that may beindicators of ecosystem processes, such as biological invasions andproductivity. Our results show that this native tussock grass is associated withhigher floristic richness, higher representation of perennials and grasses andlower presence of alien plants. This homogeneous pattern of variation across thevegetation units would suggest that, despite the absence of dramatic changes incommunity composition, the dominance of this tussock grass plays an importantrole in structuring species diversity patterns.  相似文献   

18.
Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%–100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied.Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T = LMG 30179T).  相似文献   

19.
Question: What are the effects of fire in native shrubland communities and in pine plantations established in these shrublands? Location: Northern Patagonia, Argentina. Methods: We surveyed four sites in Chall‐Huaco valley, located in northwest Patagonia. Each site was a vegetation mosaic composed of an unburned Pinus ponderosa plantation, a plantation burned in 1996, and an unburned matorral and a matorral burned by the same fire. We recorded the cover of all vascular plant species. We also analysed species richness, total cover, proportion of exotic species, abundance of woody species and herb species, cover of exotic species, abundance of woody and herb species and differences in composition of species. For both shrubs and tree species we recorded the main strategy of regeneration (by resprouting or by seed). Results: We found that fire had different effects on native matorral and pine plantations. Five years after fire, plantations came to be dominated by herbs and exotic species, showing differences in floristic composition. In contrast, matorral communities remained very similar to unburned matorral in terms of species richness, proportion of woody species, and herb species and proportion of exotics. Also, pine plantations were primarily colonized by seedlings, while matorrals were primarily colonized by resprouting. Conclusions: Matorrals are highly fire resilient communities, and the practice of establishing plantations on matorrals produces a strong reduction in the capacity of matorral to return to its original state. The elimination of shrubs owing to the effect of plantations can hinder regeneration of native ecosystems. Burned plantations may slowly develop into ecosystems similar to the native ones, or they may produce a new ecosystem dominated by exotic herbs. This study shows that plantations of exotic conifers affect native vegetation even after they have been removed, as in this case by fire.  相似文献   

20.
A synthesis of a long‐term (19 years) study assessing the effects of cattle grazing on the structure and composition of a Mediterranean grassland in north‐eastern Israel is presented, with new insights into the response of the vegetation to grazing management and rainfall. We hypothesized that the plant community studied would be resistant to high grazing intensities and rainfall variability considering the combined long history of land‐use and unpredictable climatic conditions where this community evolved. Treatments included manipulations of stocking densities (moderate, heavy, and very heavy) and of grazing regimes (continuous vs. seasonal), in a factorial design. The effect of interannual rainfall variation on the expression of grazing impacts on the plant community was minor. The main effects of grazing on relative cover of plant functional groups were related to early vs. late seasonal grazing. Species diversity and equitability were remarkably stable across all grazing treatments. A reduction in tall grass cover at higher stocking densities was correlated with increased cover of less palatable groups such as annual and perennial thistles, as well as shorter and prostrate groups such as short annual grasses. This long‐term study shows that interannual fluctuations in plant functional group composition could be partly accounted for by grazing pressure and timing, but not by the measured rainfall variables. Grazing affected the dominance of tall annual grasses. However, the persistence of tall grasses and more palatable species over time, despite large differences in grazing pressure and timing, supports the idea that Mediterranean grasslands are highly resistant to prolonged grazing. Indeed, even under the most extreme grazing conditions applied, there were no signs of deterioration or collapse of the ecosystem. This high resistance to grazing intensity and interannual fluctuation in climatic conditions should favor the persistence of the plant community under forecasted increasing unpredictability due to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号