首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was designed to resolve two largely unaddressed questions about the turnover of N in soils. One is the influence of microbial growth rate on mobilization and remineralization of cellular N. The other is to what extent heterotrophic immobilization of NO(3)(-) is controlled by the soil concentration of NH(4)(+). Bacteria were extracted from a deciduous forest soil and inoculated into an aqueous medium. Various N pool dilution/enrichment experiments were carried out to: (1) calculate the gross N immobilization and remineralization rates; (2) investigate their dependence on NH(4)(+)and NO(3)(-) concentrations; (3) establish the microbial preference for NH(4)(+)and NO(3)(-) depending on the NH(4)(+)/NO(3)(-) concentration ratio. Remineralization of microbial N occurred mainly at high growth rates and NH(4)(+) concentrations. There was a positive correlation between NH(4)(+) immobilization and remineralization rates, and intracellular recycling of N seemed to be an efficient way for bacteria to withstand low inorganic N concentrations. Thus, extensive remineralization of microbial N is likely to occur only when environmental conditions promote high growth rates. The results support previous observations of high NO(3)(-) immobilization rates, especially at low NH(4)(+) concentrations, but NO(3)(-) was also immobilized at high NH(4) concentrations. The latter can be understood if part of the microbial community has a preference for NO(3)(-) over NH(4)(+).  相似文献   

2.
This study measured total osmolarity and concentrations of NH(4)(+), NO(3)(-), K(+), soluble carbohydrates, and organic acids in maize seminal roots as a function of distance from the apex, and NH(4)(+) and NO(3)(-) in xylem sap for plants receiving NH(4)(+) or NO(3)(-) as a sole N-source, NH(4)(+) plus NO(3)(-), or no nitrogen at all. The disparity between net deposition rates and net exogenous influx of NH(4)(+) indicated that growing cells imported NH(4)(+) from more mature tissue, whereas more mature root tissues assimilated or translocated a portion of the NH(4)(+) absorbed. Net root NO(3)(-) influx under Ca(NO(3))(2) nutrition was adequate to account for pools found in the growth zone and provided twice as much as was deposited locally throughout the non-growing tissue. In contrast, net root NO(3)(-) influx under NH(4)NO(3) was less than the local deposition rate in the growth zone, indicating that additional NO(3)(-) was imported or metabolically produced. The profile of NO(3)(-) deposition rate in the growth zone, however, was similar for the plants receiving Ca(NO(3))(2) or NH(4)NO(3). These results suggest that NO(3)(-) may serve a major role as an osmoticant for supporting root elongation in the basal part of the growth zone and maintaining root function in the young mature tissues.  相似文献   

3.
Nitrification involves the sequential biological oxidation of reduced nitrogen species such as ammonium-nitrogen (NH(4)(+)-N) to nitrite-nitrogen (NO(2)(-)-N) and nitrate-nitrogen (NO(3)(-)-N). The adequacy of modeling NH(4)(+)-N to NO(3)(-)-N oxidation as one composite biochemical reaction was examined at different relative dynamics of NH(4)(+)-N to NO(2)(-)-N and NO(2)(-)-N to NO(3)(-)-N oxidation. NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation by a mixed nitrifying consortium were uncoupled using selective inhibitors allylthiourea and sodium azide. The kinetic parameters of NH(4)(+)-N to NO(2)(-)-N oxidation (q(max,ns) and K(S,ns)) and NO(2)(-)-N to NO(3)(-)-N oxidation (q(max,nb) and K(S,nb)) were determined by a rapid extant respirometric technique. The stoichiometric coefficients relating nitrogen removal, oxygen uptake and biomass synthesis were derived from an electron balanced equation. NH(4)(+)-N to NO(2)(-)-N oxidation was not affected by NO(2)(-)-N concentrations up to 100 mg NO(2)(-)-N L(-1). NO(2)(-)-N to NO(3)(-)-N oxidation was noncompetitively inhibited by NH(4)(+)-N but was not inhibited by NO(3)(-)-N concentrations up to 250 mg NO(3)(-)-N L(-1). When NH(4)(+)-N to NO(2)(-)-N oxidation was the sole rate-limiting step, complete NH(4)(+)-N to NO(3)(-)-N oxidation was adequately modeled as one composite process. However, when NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation were both rate limiting, the estimated lumped kinetic parameter estimates describing NH(4)(+)-N to NO(3)(-)-N oxidation were unrealistically high and correlated. These findings indicate that the use of single-step models to describe batch NH(4)(+) oxidation yields erroneous kinetic parameters when NH(4)(+)-to-NO(2)(-) oxidation is not the sole rate-limiting process throughout the assay. Under such circumstances, it is necessary to quantify NH(4)(+)-N to NO(2)(-)-N oxidation and NO(2)(-)-N to NO(3)(-)-N oxidation, independently.  相似文献   

4.
Short- and long-term responses of inorganic N pools and plant-atmosphere NH(3) exchange to changes in external N supply were investigated in 11-week-old plants of two grass species, Lolium perenne and Bromus erectus, characteristic of N-rich and N-poor grassland ecosystems, respectively. A switch of root N source from NO(-)(3)to NH(4)(+) caused within 3 h a 3- to 6-fold increase in leaf apoplastic NH(4)(+) concentration and a simultaneous decrease in apoplastic pH of about 0.4 pH units in both species. The concentration of total extractable leaf tissue NH(4)(+) also increased two to three times within 3 h after the switch. Removal of exogenous NH(4)(+) caused the apoplastic NH(4)(+) concentration to decline back to the original level within 24 h, whereas the leaf tissue NH(4)(+)concentration decreased more slowly and did not reach the original level in 48 h. After growing for 5 weeks with a steady-state supply of NO(-)(3)or NH(4)(+), L. perenne were in all cases larger, contained more N, and utilized the absorbed N more efficiently for growth than B. erectus, whereas the two species behaved oppositely with respect to tissue concentrations of NO(-)(3), NH(4)(+), and total N. Ammonia compensation points were higher for B. erectus than for L. perenne and were in both species higher for NH(4)(+)- than for NO(-)(3)-grown plants. Steady-state levels of apoplastic NH(4)(+), tissue NH(4)(+), and NH(3) emission were significantly correlated. It is concluded that leaf apoplastic NH(4)(+) is a highly dynamic pool, closely reflecting changes in the external N supply. This rapid response may constitute a signaling system coordinating leaf N metabolism with the actual N uptake by the roots and the external N availability.  相似文献   

5.
Effects of nitrite and ammonium on methane-dependent denitrification   总被引:1,自引:0,他引:1  
For effective application of methane-dependent denitrification (MDD) in the treatment of wastewater containing NO(2)(-) or NH(4)(+), the effect of these inorganic nitrogen compounds on MDD activity needs to be clarified. The MDD activity of sludge acclimatized with CH(4) and O(2) was determined with mineral media of different nitrogen-compound compositions in the presence of 0.21 atm CH(4) and 0.20 atm O(2). Incubations with media containing only NO(2)(-) or two of the three inorganic nitrogen compounds (NO(3)(-)+NO(2)(-), NO(2)(-)+NH(4)(+) or NH(4)(+)+NO(3)(-)) resulted in MDD activity equal to or higher than that with media containing only NO(3)(-). However, there was no MDD activity in media containing NO(2)(-) at 10 degrees C, probably because of serious inhibition of NO(2)(-) on methane oxidation. MDD occurred in media containing only NH(4)(+), although the total nitrogen removal efficiency was very low. These results show that NO(2)(-) and NH(4)(+), in the presence of NO(x)(-), do not inhibit but rather promote MDD. Consequently, NH(4)(+) does not need to be completely oxidized to NO(3)(-) in the nitrification reactor before MDD. However, under psychrophilic conditions, NO(2)(-) seriously inhibited MDD. Therefore, the nitrification reactor must not discharge effluent containing NO(2)(-) under psychrophilic conditions.  相似文献   

6.
Productivity of cereal crops is restricted in saline soils but may be improved by nitrogen nutrition. In this study, the effect of ionic nitrogen form on growth, mineral content, protein content and ammonium assimilation enzyme activities of barley (Hordeum vulgare cv. Alexis L.) irrigated with saline water, was determined. Leaf and tiller number as well as plant fresh and dry weights declined under salinity (120 mM NaCl). In non-saline conditions, growth parameters were increased by application of NH(4)(+)/NO(3)(-) (25:75) compared to NO(3)(-) alone. Under saline conditions, application of NH(4)(+)/NO(3)(-) led to a reduction of the detrimental effects of salt on growth. Differences in growth between the two nitrogen regimes were not due to differences in photosynthesis. The NH(4)(+)/NO(3)(-) regime led to an increase in total N in control and saline treatments, but did not cause a large decrease in plant Na(+) content under salinity. Activities of GS (EC 6.3.1.2), GOGAT (EC 1.4.1.14), PEPC (EC 4.1.1.31) and AAT (EC 2.6.1.1) increased with salinity in roots, whereas there was decreased activity of the alternative ammonium assimilation enzyme GDH (EC 1.4.1.2). The most striking effect of nitrogen regime was observed on GDH whose salinity-induced decrease in activity was reduced from 34% with NO(3)(-) alone to only 14% with the mixed regime. The results suggest that the detrimental effects of salinity can be reduced by partial substitution of NO(3)(-) with NH(4)(+) and that this is due to the lower energy cost of N assimilation with NH(4)(+) as opposed to NO(3)(-) nutrition.  相似文献   

7.
The role of AtNrt2.1 and AtNrt2.2 genes, encoding putative NO(3)(-) transporters in Arabidopsis, in the regulation of high-affinity NO(3)(-) uptake has been investigated in the atnrt2 mutant, where these two genes are deleted. Our initial analysis of the atnrt2 mutant (S. Filleur, M.F. Dorbe, M. Cerezo, M. Orsel, F. Granier, A. Gojon, F. Daniel-Vedele [2001] FEBS Lett 489: 220-224) demonstrated that root NO(3)(-) uptake is affected in this mutant due to the alteration of the high-affinity transport system (HATS), but not of the low-affinity transport system. In the present work, we show that the residual HATS activity in atnrt2 plants is not inducible by NO(3)(-), indicating that the mutant is more specifically impaired in the inducible component of the HATS. Thus, high-affinity NO(3)(-) uptake in this genotype is likely to be due to the constitutive HATS. Root (15)NO(3)(-) influx in the atnrt2 mutant is no more derepressed by nitrogen starvation or decrease in the external NO(3)(-) availability. Moreover, the mutant also lacks the usual compensatory up-regulation of NO(3)(-) uptake in NO(3)(-)-fed roots, in response to nitrogen deprivation of another portion of the root system. Finally, exogenous supply of NH(4)(+) in the nutrient solution fails to inhibit (15)NO(3)(-) influx in the mutant, whereas it strongly decreases that in the wild type. This is not explained by a reduced activity of NH(4)(+) uptake systems in the mutant. These results collectively indicate that AtNrt2.1 and/or AtNrt2.2 genes play a key role in the regulation of the high-affinity NO(3)(-) uptake, and in the adaptative responses of the plant to both spatial and temporal changes in nitrogen availability in the environment.  相似文献   

8.
A mechanistically based nitrification model was formulated to facilitate determination of both NH(4)(+)-N to NO(2)(-)-N and NO(2)(-)-N to NO(3)(-)-N oxidation kinetics from a single NH(4)(+)-N to NO(3)(-)-N batch-oxidation profile by explicitly considering the kinetics of each oxidation step. The developed model incorporated a novel convention for expressing the concentrations of nitrogen species in terms of their nitrogenous oxygen demand (NOD). Stoichiometric coefficients relating nitrogen removal, oxygen uptake, and biomass synthesis were derived from an electron-balanced equation.%A parameter identifiability analysis of the developed two-step model revealed a decrease in correlation and an increase in the precision of the kinetic parameter estimates when NO(2)(-)-N oxidation kinetics became increasingly rate-limiting. These findings demonstrate that two-step models describe nitrification kinetics adequately only when NH(4)(+)-N to NO(3)(-)-N oxidation profiles contain sufficient information pertaining to both nitrification steps. Thus, the rate-determining step in overall nitrification must be identified before applying conventionally used models to describe batch nitrification respirograms.  相似文献   

9.
The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low pH levels around the roots are very stressful for the plant. The common occurrence of T. latifolia in very acidic areas is probably only possible because of the plant's ability to modify pH-conditions in the rhizosphere.  相似文献   

10.
Catasetum fimbriatum is an epiphytic orchid from South America that has been used for 15 years as a model plant for metabolic and developmental studies in our laboratory. In this work, C. fimbriatum plants were aseptically grown with 6 mol m(-3) of either glutamine or inorganic nitrogen forms (NO(3)(-):NH(4)(+) ratios). The highest biomass accumulation was found in plants supplied with glutamine; no significant difference was observed in plants incubated in the presence of inorganic nitrogen sources. Nitrogen assimilation was limited in the presence NO(3)(-) as a sole nitrogen source. C. fimbriatum did not accumulate NO(3)(-) and very low rates of in vivo nitrate reductase activity were observed. Most nitrate reductase activity (70%) was detected in the 2 cm apical roots. Nitrate-treated plants exhibited relatively lower amounts of free amino-N, chlorophyll and free NH(4)(+) contents and higher soluble sugar contents than the NH(4)(+)-treated plants. While shoot glutamine synthetase activity was only slightly affected by nitrogen sources, root glutamine synthetase activity was not modified by any nitrogen form. Glutamate dehydrogenase-NADH activity in shoot tissues was not influenced by any nitrogen source. However, the glutamate dehydrogenase-NADH activity in roots was enhanced when NH(4)(+) tissue contents was augmented by increasing NH(4)(+) in the medium and by the presence of glutamine. Our results strongly suggest that organic nitrogen and NH(4)(+) are probably the most important nitrogen sources to C. fimbriatum plants.  相似文献   

11.
Estimates of NH4+-and NO2-oxidizers in samples from four activated sludge plants treating mainly domestic sewage were obtained using a most-probable-number (MPN) technique. Ranges of concentrations per milliliter of each, respectively, were 1,010 to 3,880 and 79 to 145 in settled sewages, 32 to 7,420 and 2 to 1,010 in secondary effluents, and less than 0.1 to 622 and 0.1 to 70 in chlorinated secondary effluents. The results of this field study indicated that nitrifiers were more resistant to chlorination than fecal streptococci, which were also enumerated. In laboratory studies the survivals of these bacterial groups in secondary effluents were determined after exposure to chlorine residuals of up to 2 mg/liter for 0 to 60 min. The nitrifiers proved considerably more resistant than fecal streptococci, with NO2-oxidizers showing greater resistance than NH4+-oxidizers. Below the outfall of one of the plants that discharges heavily chlorinated unnitrified effluent, NH4+-oxidizers amounted to approximately 200 X 10(5) per g of slime scraped from stream-bed rocks. Upstream of the outfall this was approximatley 3 X 10(5)/G.  相似文献   

12.
The goal of this study was to determine the interaction of mycorrhizae and two N sources, ammonium (NH(4)(+)) and nitrate (NO(3)(-)), on the growth of a coastal sage scrub (CSS) species, Artemisia californica, and an exotic annual grass, Bromus madritensis ssp. rubens. Anthropogenic nitrogen deposition may be influencing the decline of CSS and replacement by exotic grasses, but the extent to which mycorrhizae are involved in shrubland decline is unknown. NO(3)(-) is the dominant form of deposition in southern California, although the native, uneutrophied soils have a greater concentration of NH(4)(+). Seeds of each species were germinated in pots of sterile soil, inoculated with native soil containing mycorrhizal spores and infective root fragments, and fertilized with 50 μg/g of either NO(3)(-) or NH(4)(+). NH(4)(+) enhanced the growth of both mycorrhizal species, while NO(3)(-) did not. Control plants of B. madritensis under low N had a significant response to mycorrhizae, but A. californica did not. Nitrate increased the growth of nonmycorrhizal A. californica as much as the mycorrhizal NH(4)(+)-treated plants. There is no evidence in this study to suggest that the decline of A. californica or increase in B. madritensis is due to a mycorrhizal response to NO(3)(-). Other life history traits of the two species must be used to explain the invasive behavior of the annual grass. Mycorrhizae may be more important in controlling plant growth in native uneutrophied soils dominated by NH(4)(+) rather than NO(3)(-).  相似文献   

13.
Krouk G  Tillard P  Gojon A 《Plant physiology》2006,142(3):1075-1086
The NRT2.1 gene of Arabidopsis thaliana encodes a major component of the root high-affinity NO(3)(-) transport system (HATS) that plays a crucial role in NO(3)(-) uptake by the plant. Although NRT2.1 was known to be induced by NO(3)(-) and feedback repressed by reduced nitrogen (N) metabolites, NRT2.1 is surprisingly up-regulated when NO(3)(-) concentration decreases to a low level (<0.5 mm) in media containing a high concentration of NH(4)(+) or Gln (>or=1 mm). The NRT3.1 gene, encoding another key component of the HATS, displays the same response pattern. This revealed that both NRT2.1 and NRT3.1 are coordinately down-regulated by high external NO(3)(-) availability through a mechanism independent from that involving N metabolites. We show here that repression of both genes by high NO(3)(-) is specifically mediated by the NRT1.1 NO(3)(-) transporter. This mechanism warrants that either NRT1.1 or NRT2.1 is active in taking up NO(3)(-) in the presence of a reduced N source. Under low NO(3)(-)/high NH(4)(+) provision, NRT1.1-mediated repression of NRT2.1/NRT3.1 is relieved, which allows reactivation of the HATS. Analysis of atnrt2.1 mutants showed that this constitutes a crucial adaptive response against NH(4)(+) toxicity because NO(3)(-) taken up by the HATS in this situation prevents the detrimental effects of pure NH(4)(+) nutrition. It is thus hypothesized that NRT1.1-mediated regulation of NRT2.1/NRT3.1 is a mechanism aiming to satisfy a specific NO(3)(-) demand of the plant in relation to the various specific roles that NO(3)(-) plays, in addition to being a N source. A new model is proposed for regulation of the HATS, involving both feedback repression by N metabolites and NRT1.1-mediated repression by high NO(3)(-).  相似文献   

14.
Ammonium to nitrate ratios of 0:30, 5:25, 10:20, 15:15, 20:10, 25:5, and 30:0 mM were tested to determine the optimal NH(4)(+) :NO(3)(-) ratio for improving biomass and bioactive compound production in Eleutherococcus koreanum Nakai adventitious roots using 3-L bulb-type bubble bioreactors. A high ammonium nitrogen ratio had a negative effect on root growth, and the highest fresh and dry weights were obtained when NH(4)(+):NO(3)(-) ratios were 5:25 and 10:20 (mM) after 5 weeks of culture. Although the total production of eleutherosides B and E was slightly higher at the 10:20 ratio than at the 5:25 ratio (NH(4)(+):NO(3)(-)), we proposed that the optimal NH(4)(+):NO(3)(-) ratio was 5:25 mM. This ratio achieved both the highest total production of five target bioactive compounds (eleutherosides B and E, chlorogenic acid, total phenolics, and flavonoids) and the highest root biomass. Furthermore, increasing NH(4)(+):NO(3)(-) ratios to 10:20 decreased pH in the medium, interrupted the absorption of essential minerals from the culture medium, and resulted in low biomass and increased relative oxidative stress levels, which were evaluated by determining 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. Therefore, nitrate rather than ammonium nitrogen was more essential not for only biomass production but also for bioactive compound production in E. koreanum adventitious root cultures. The optimal nitrogen source ratio produced 5.63 g L(-1) of biomass and 24.41 mg of the five total bioactive compounds per gram of biomass (dry weight basis). The development of such in vitro culture technology will benefit the pilot-scale production of E. koreanum-based bioactive compounds for commercialization.  相似文献   

15.
16.
The disruption of K(+) transport and accumulation is symptomatic of NH(4)(+) toxicity in plants. In this study, the influence of K(+) supply (0.02-40 mM) and nitrogen source (10 mM NH(4)(+) or NO(3)(-)) on root plasma membrane K(+) fluxes and cytosolic K(+) pools, plant growth, and whole-plant K(+) distribution in the NH(4)(+)-tolerant plant species rice (Oryza sativa L.) was examined. Using the radiotracer (42)K(+), tissue mineral analysis, and growth data, it is shown that rice is affected by NH(4)(+) toxicity under high-affinity K(+) transport conditions. Substantial recovery of growth was seen as [K(+)](ext) was increased from 0.02 mM to 0.1 mM, and, at 1.5 mM, growth was superior on NH(4)(+). Growth recovery at these concentrations was accompanied by greater influx of K(+) into root cells, translocation of K(+) to the shoot, and tissue K(+). Elevating the K(+) supply also resulted in a significant reduction of NH(4)(+) influx, as measured by (13)N radiotracing. In the low-affinity K(+) transport range, NH(4)(+) stimulated K(+) influx relative to NO(3)(-) controls. It is concluded that rice, despite its well-known tolerance to NH(4)(+), nevertheless displays considerable growth suppression and disruption of K(+) homeostasis under this N regime at low [K(+)](ext), but displays efficient recovery from NH(4)(+) inhibition, and indeed a stimulation of K(+) acquisition, when [K(+)](ext) is increased in the presence of NH(4)(+).  相似文献   

17.
A new in vitro experimental system was developed to study the morphogenesis of discrete regions of a single extraradical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus intraradices, growing simultaneously in six different agar-based media. The media were (i) unamended water agar (WA), (ii) WA+PO(4)(3-) (PO(4)(3-)), (iii) WA+NO(3)(-) (NO(3)(-)), (iv) WA+NH(4)(+) (NH(4)(+)), (v) WA+NH(4)(+)+MES (NH(4)(+)+MES) and (vi) minimal medium (M, complete nutrients). Each medium was amended with the pH indicator bromocresol purple. The extraradical mycelium of the fungus showed between-treatment differences in morphogenesis, architecture, formation of branched absorbing structures (BAS) and sporulation. Extraradical hyphae that developed in WA or PO(4)(3-) compartments exhibited an economic development pattern, in which runner hyphae radially extended the external colony. Extraradical hyphal growth in the NO(3)(-) compartments was characterized by increased formation of runner hyphae, BAS and spores and an alkalinization of the medium. In the two NH(4)(+)-amended media (NH(4)(+), NH(4)(+)+MES), sporulation was suppressed and considerable morphological changes were noted. These results show the plasticity of G. intraradices that lets it efficiently exploit an heterogeneous substrate.  相似文献   

18.
An anaerobic-aerobic process including a fresh refuse landfill reactor as denitrifying reactor, a well-decomposed refuse reactor as methanogenesis reactor and an aerobic activated sludge reactor as nitrifying reactor was operated by leachate recirculation to remove organic and nitrogen simultaneously. The results indicated that denitrification and methanogenesis were carried out successfully in the fresh refuse and well-decomposed landfill reactors, respectively, while the nitrification of NH(4)(+)-N was performed in the aerobic reactor. The maximum organic removal rate was 1.78 kg COD/m(3)d in the well-decomposed refuse landfill reactor while the NH(4)(+)-N removal rate was 0.18 kg NH(4)(+)-N/m(3)d in the aerobic reactor. The biogas from fresh refuse reactors and well-decomposed refuse landfill reactors were consisted of mainly carbon dioxide and methane, respectively. The volume fraction of N(2) increased with the increase of NO(3)(-)-N concentration and decreased with the drop of NO(3)(-)-N concentration. The denitrifying bacteria mustered mainly in middle layer and the denitrifying bacteria population had a good correlation with NO(3)(-)-N concentration.  相似文献   

19.
Nitrate and ammonium removal from purified swine wastewater using biogas and air was investigated in continuous reactor operation. A novel type of reactor, a semi-partitioned reactor (SPR), which enables a biological reaction using methane and oxygen in the water phase and discharges these unused gases separately, was operated with a varying gas supply rate. Successful removal of NO(3)(-) and NH(4)(+) was observed when biogas and air of 1L/min was supplied to an SPR of 9L water phase with a NO(2,3)(-)-N and NH(4)(+)-N removal rate of 0.10 g/L/day and 0.060 g/L/day, respectively. The original biogas contained an average of 77.2% methane, and the discharged biogas from the SPR contained an average of 76.9% of unused methane that was useable for energy like heat or electricity production. Methane was contained in the discharged air from the SPR at an average of 2.1%. When gas supply rates were raised to 2L/min and the nitrogen load was increased, NO(3)(-) concentration was decreased, but NO(2)(-) accumulated in the reactor and the NO(2,3)(-)-N and NH(4)(+)-N removal activity declined. To recover the activity, lowering of the nitrogen load and the gas supply rate was needed. This study shows that the SPR enables nitrogen removal from purified swine wastewater using biogas under limited gas supply condition.  相似文献   

20.
Although an increasing number of studies show that many plant species have the capacity to take up amino acids from exogenous sources, the importance of such uptake for plant nitrogen nutrition is largely unknown. Moreover, little is known regarding metabolism and distribution of amino acid-N following uptake or of the regulation of these processes in response to plant nitrogen status. Here results are presented from a study following uptake, metabolism, and distribution of nitrogen from NO(3)(-) NH(4)(+), Glu, or Ala in Scots pine (Pinus sylvestris L). In a parallel experiment, Ala uptake, processing, and shoot allocation were also monitored following a range of pretreatments intended to alter plant C- and N-status. Uptake data, metabolite profiles, N fluxes through metabolite pools and tissues, as well as alanine aminotransferase activity are presented. The results show that uptake of the organic N sources was equal to or larger than NH(4)(+) uptake, while NO(3)(-) uptake was comparatively low. Down-regulation of Ala uptake in response to pretreatments with NH(4)NO(3) or methionine sulphoximine (MSX) indicates similarities between amino acid and inorganic N uptake regulation. N derived from amino acid uptake exhibited a rapid flux through the amino acid pool following uptake. Relative shoot allocation of amino acid-N was equal to that of NH(4)(+) but smaller than for NO(3)(-) Increased N status as well as MSX treatment significantly increased relative shoot allocation of Ala-N suggesting that NH(4)(+) may have a role in the regulation of shoot allocation of amino acid-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号