首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hawthorn (Crataegus spp.) is an important plant with a long history as an ornamental and a source of medicine. A protocol is outlined for adventitious bud regeneration from leaf and cotyledon explants of Chinese hawthorn (C. pinnatifida Bge. var. major N.E.Br.). Adventitious buds were induced on both the leaves of sprouting winter buds and the leaves of in vitro plants, but the percentage of bud regeneration from leaves of in vitro plants was very low—less than 6%. On N6 medium supplemented with 31.08 μM BA and 9.67 μM NAA, the percentages of bud regeneration from leaves of sprouting winter buds of cultivars “Liaohong” and “Qiujinxing” were 31.4% and 17.6%, respectively. The regeneration abilities of three kinds of cotyledon explants, immature cotyledon, mature cotyledon, and cotyledon leaf, were compared. The percentage of bud regeneration from cotyledon leaves was higher. On MS media supplemented with 4.44 μM BA and 4.54–9.08 μM TDZ, the percentages of bud regeneration from cotyledon leaves of cultivars “Qiujinxing” and “Xiajinxing” were 27.7 ± 7.8% and 20.1 ± 4.7%, respectively, and the numbers of buds per explant were 5.9 ± 1.6 and 3.2 ± 0.7, respectively. On B5 medium supplemented with 2.22 μM BA, 2.32 μM Kn, and 0.57 μM IAA, adventitious buds grew quickly and 80–100% of buds developed into shoots. The shoots rooted successfully with the two-step rooting method. Ninety days after transplantation, more than 80% plants were survived. This system of adventitious bud regeneration from leaf and cotyledon explants could be useful for the genetic transformation and polyploidization of Chinese hawthorn.  相似文献   

2.
Internode explants collected from in vitro grown shoots of two clones of Fagus sylvatica L. (European beech) and five clones of F. orientalis Lipski (Oriental beech) were used to evaluate their bud regeneration capacity. Adventitious shoot-buds formed on callus, which developed from internode segments cultured in a Woody Plant Medium supplemented with different concentrations of either thidiazuron (TDZ) or benzyladenine (BA). After 4 weeks of culture on induction media, the explants were transferred to a proliferation medium supplemented with 2.2 μM BA, 9.1 μM zeatin and 2.9 μM indole-3-acetic acid (IAA) for another 8 weeks. Medium containing TDZ was much more efficient than medium containing BA in inducing adventitious buds, the optimal TDZ concentration being 4.5 μM and the optimal BA concentration 17.8 μM. Genotypic variation in shoot regeneration capacity was observed among the two Fagus species and between clones within each species, with a significant interaction between TDZ concentration and genotype regarding mean bud number. Thidiazuron induction medium supplemented with a range of individual auxins was investigated, and it was found that IAA or indole-3-butyric acid at 2.9 μM enhanced the bud forming capacity of explants. Morphogenic response varied significantly with the position of the internode along the stem. The highest regeneration potential was obtained from apical internodes, while those distal to the apex were the least productive. Elongated shoots of adventitious origin can be readily proliferated by axillary branching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Leaf explants of Jatropha curcas cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ; 0.90 μM) in combination with indole-3-butyric acid (IBA; 0.98μM) produced adventitious shoot buds directly on the surface of the explants without formation of intervening callus while shoot bud formation was accompanied with callus formation on medium supplemented with 6-benzylaminopurine (BAP; 13.3 μM) and IBA (2.46 μM). TDZ treatment resulted in more than twice higher rate of shoot bud induction than BAP. Shoot buds were multiplied and elongated following repeated transfers to medium containing BAP (2.22 μM) and gibberellic acid (GA3; 1.44 μM). The effect of copper sulphate on differentiation of shoot buds from leaf segments was also investigated. Both shoot induction and multiplication media were supplemented with different levels of CuSO4 (0–5 μM). Significant improvement in shoot bud induction was observed when the concentration of CuSO4 was increased to 10 times the normal MS level. Healthy elongated shoots were rooted on half strength MS medium supplemented with IBA (2.46 μM). Rooted plantlets were transferred to field and survived. Histological analysis revealed direct formation of shoot buds from leaf explants.  相似文献   

4.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

5.
A simple, high-frequency and reproducible protocol for induction of adventitious shoot buds and plant regeneration from leaf-disc cultures of Jatropha curcas L. has been developed. Adventitious shoot buds were induced from very young leaf explants of in vitro germinated seedlings as well as mature field-grown plants cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ) (2.27 μM), 6-benzylaminopurine (BA) (2.22 μM) and indole-3-butyric acid (IBA) (0.49 μM). The presence of TDZ in the induction medium has greater influence on the induction of adventitious shoot buds, whereas BA in the absence of TDZ promoted callus induction rather than shoot buds. Induced shoot buds were multiplied and elongated into shoots following transfer to the MS medium supplemented with BA (4.44 μM), kinetin (Kn) (2.33 μM), indole-3-acetic acid (IAA) (1.43 μM), and gibberellic acid (GA3) (0.72 μM). Well-developed shoots were rooted on MS medium supplemented with IBA (0.5 μM) after 30 days. Regenerated plants after 2 months of acclimatization were successfully transferred to the field without visible morphological variation. This protocol might find use in mass production of true-to-type plants and in production of transgenic plants through Agrobacterium/biolistic-mediated transformation.  相似文献   

6.
Summary Protocols for both axillary bud proliferation and shoot organogenesis of Euphorbia pulchurrima Winter RoseTM were developed using terminal buds and leaf tissues. Greenhouse-grown terminal buds were placed on Murashige-Skoog (MS) basal medium supplemented with various concentrations of either benzlyaminopurine (BA) or thidiazuron (TDZ). Explants produced the greatest number of axillary buds on media containing between 2.2 and 8.8 μM BA. The number of explants that produced axillary buds increased with increasing BA concentration. TDZ at concentrations between 2.3 and 23.0 μM caused hyperhydricity of shoots and were not effective in promoting shoot proliferation. The most calluses and shoots were produced from leaf midvein sections from in vitro grown plants placed on the medium containing 8.8–13.3 μM BA and 17.1 μM indole-3-acetic acid (IAA) for 1 mo. before transferring to the medium containing only BA. Adventitious buds were produced only from red-pigmented callus, and explants that produced callus continued to produce adventitious shoots in the presence of IAA. Five-mo.-old shoots derived from shoot culture or organogenesis rooted readily in artificial soil with or without treatment with indolebutyric acid, and were acclimatized in the greenhouse.  相似文献   

7.
Leaf regeneration via direct induction of adventitious shoots obtained from an endangered medicinal plant, Curculigo orchioides Gaertn. by pretreating with thidiazuron. C. orchioides is an endangered medicinal herb belonging to the family Hypoxidaceae. Direct inoculation of leaf pieces on MS medium supplemented with various concentrations of BAP (2–8 μM) or TDZ (2–8 μM) alone or in combination with NAA (0.5 and 1.0 μM) produced low shoot induction both in terms of % response and number of shoots per explant. Hence, leaf explants were pretreated with 15, 25 or 50 μM thidiazuron (TDZ), for 6, 24 or 48 h with the aim of improving shoot regeneration from cultured explants. After pretreatment, explants were transferred to an agar solidified MS medium that was supplemented with BAP (4 μM), TDZ (6 μM), BAP (4 μM) + NAA (1.0 μM), TDZ (6 μM) + NAA (0.5 μM). Control explants were incubated directly on the medium without any pretreatment. The pretreatment of explants with 15 μM TDZ for 24 h significantly promoted the formation of adventitious shoots and the maximum response was observed on MS medium supplemented with 6 μM TDZ. In this medium, 96 % cultures responded with an average number of 16.2 adventitious shoots per explant. The percentage of leaf explants producing shoots and the average number of shoots per explant were significantly improved when TDZ pretreated leaves were cultured onto MS medium supplemented with BAP or TDZ alone or in combination with NAA. The rooted plantlets were successfully transplanted to soil with 90% success. The present investigation indicated the stimulatory role of TDZ pretreatment in regulating shoot regeneration from leaf explants of C. orchioides.  相似文献   

8.
Thidiazuron (TDZ), primarily a cotton defoliant, has been later accepted as a plant growth regulator. In spite of extensive studies, the physiological function of TDZ is still uncertain. The aim of the present experiment was to study the activity of TDZ in in vitro regeneration of soybean. The seeds of soybean were cultured separately on MS and B5 medium supplemented with TDZ. The hypocotyls, cotyledons, cotyledonary nodes without axillary buds and cotyledonary nodes with axillary buds were used as explants and their capacity to direct regeneration was tested on both MS and B5 media containing TDZ (0.9–5.4 μM). Shoot formation was observed only on cotyledonary nodes with axillary buds cultured on MS and B5 basal media with TDZ (0.9–5.4 μM). All tested explants cultured on B5 medium with TDZ produced roots. Root formation was not observed on MS basal media supplemented with TDZ. Results show that TDZ functions as cytokinin (to produce the shoots) and auxin (to produce the roots) on various explants depending on the basal medium used.  相似文献   

9.
Morphogenesis from several explant types excised from in-vitro-grown plantlets of a Brazilian eggplant (Solanum melongena L.) variety (F-100) was evaluated in response to thidiazuron (TDZ). Leaves and cotyledons were found to be the most responsive explants. Optimal shoot bud induction rates (75–100 buds/explant) were achieved in the presence of 0.2 μm TDZ. Organogenic calli were transferred to growth regulator free MS medium before shoot excision. Rooting was induced on half-strength MS medium supplemented with 0.6 μm IAA. Received: 1 March 1997 / Revision received: 29 October 1997 / Accepted: 15 November 1997  相似文献   

10.
Direct shoot bud induction and plant regeneration was achieved in Capsicum frutescens var. KTOC. Aseptically grown seedling explants devoid of roots, apical meristem and cotyledons were inoculated in an inverted position in medium comprising of Murashige and Skoog (Physiol Plant 15:472–497, 1962) basal medium supplemented with 2-(N-morpholine) ethanesulphonic acid buffer along with 2.28 μM indole-3-acetic acid, 10 μM silver nitrate and either of 13.31–89.77 μM benzyl adenine (BA), 9.29–23.23 μM kinetin, 0.91–9.12 μM zeatin, 2.46–9.84 μM 2-isopentenyl adenine. Profuse shoot bud induction was observed only in explants grown on a media supplemented with BA (26.63 μM) as a cytokinin source and 19.4 ± 4.2 shoot buds per explant was obtained in inverted mode under continuous light. Incorporation of polyamine inhibitors in the culture medium completely inhibited shoothoot bud induction. Incorporation of exogenous polyamines improved the induction of shoot buds under 24 h photoperiod. These buds were elongated in MS medium containing 2.8 μM gibberellic acid. Transfer of these shoots to hormone-free MS medium resulted in rooting and rooted plants were transferred to fields. This protocol can be efficiently used for mass propagation and presumably also for regeneration of genetically transformed C. frutescens.  相似文献   

11.
The effect of copper sulphate on differentiation and elongation of shoot buds from cotyledonary explants of Capsicum annuum L. cv X-235 was investigated. Shoot buds were induced on medium supplemented with 22.2 μM BAP and 14.7 μM PAA. Elongation of shoot buds was obtained on MS medium containing 13.3 μM BAP + 0.58 μM GA3. Both shoot induction and elongation media were supplemented with different levels of CuSO4 (0–5 μM). The levels of CuSO4 in the induction as well as elongation medium highly influenced the shoot bud formation and their subsequent elongation. Highest number of shoot buds per explant was obtained when the concentration of CuSO4 was increased 30 times to the normal MS level. Shoot buds formation frequency i.e., the number of shoots formed per explant was increased two fold as compared to those formed on control. Elongation both in terms of percentage and length of shoots was better than that on control. Healthy elongated shoots were rooted on MS medium supplemented with 5.7 μM IAA. Rooted plantlets were transferred to field conditions.  相似文献   

12.
Multiple Shoot Regeneration from Immature Embryo Explants of Papaya   总被引:1,自引:1,他引:0  
A simple and rapid method for multiple shoot formation in vitro from immature embryo axis explants of Carica papaya L. cvs. Honey Dew, Washington and Co2 is described. Multiple shoot regeneration was achieved by culture of the explants on modified Murashige and Skoog (MS) medium supplemented either with thidiazuron (TDZ; 0.45–22.7 μM) or a combination of benzylaminopurine (BAP; 0.2 – 8.84 μM) and naphthalene acetic acid (NAA; 0.5 – 2.64 μM). Highest frequency of shoot regeneration occurred on medium supplemented either with 2.25 μM TDZ or a combination of BAP (4.4 μM) and NAA (0.5 μM). Composition of the basal media influenced the frequency of multiple shoot initiation. Stunted shoots regenerated at 4.5 μM and higher concentrations of TDZ. Such shoots could, however, be elongated by transfer to medium containing 5.7 μM GA3. Rooting of the regenerated shoots was achieved in presence of indolebutyric acid (IBA; 4.92 – 19.68 μM), however, least response was in presence of 14.7 μM IBA. Rooted plants were hardened and transferred to pots. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
A simple, high frequency, and reproducible method for plant regeneration through direct organogenesis from cotyledonary leaf explants of Jatropha curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ) or 6-benzyl aminopurine (BAP). Medium containing TDZ has greater influence on regeneration as compared to BAP. The induced shoot buds were transferred to MS medium containing 10 μM kinetin (Kn), 4.5 μM BAP, and 5.5 μM α-naphthaleneacetic acid (NAA) for shoot proliferation. The proliferated shoots could be elongated on MS medium supplemented with different concentrations and combinations of BAP, indole-3-acetic acid (IAA), NAA, and indole-3-butyric acid (IBA). MS medium with 2.25 μM BAP and 8.5 μM IAA was found to be the best combination for shoot elongation. However, significant differences in plant regeneration and shoot elongation were observed among the genotypes studied. Rooting was achieved when the basal cut end of elongated shoots were dipped in half strength MS liquid medium containing different concentrations and combinations of IBA, IAA, and NAA for 4 days, followed by transfer to growth regulators free half strength MS medium supplemented 0.25 mg l−1 activated charcoal. Elongated shoot treated with 15 μM IBA, 5.7 μM IAA, and 11 μM NAA resulted in highest percent rooting. The rooted plants could be established in soil with more than 90% survival rate. The method developed may be useful in improvement of J. curcas through genetic modification.  相似文献   

14.
Filipendula ulmaria (L.) Maxim (meadowsweet) is a medicinal plant that is claimed to have several biological activities, including anti-tumor, anti-carcinogenic, anti-oxidant, anti-coagulant, anti-ulcerogenic, anti-microbial, anti-arthritic, and immunomodulatory properties. This report describes, for the first time, an efficient plant regeneration system for F. ulmaria via adventitious shoot development from leaf, petiole, and root explants cultured on Murashige and Skoog’s minimal organics medium containing different concentrations of thidiazuron (TDZ), benzyladenine, and kinetin either alone or in combination with different auxins. Relatively extensive/prolific shoot regeneration was observed in all three explant types with TDZ in combination with indole-3-acetic acid (IAA). Gibberellic acid (GA3), TDZ, and IAA combinations were also tested. The best shoot proliferation was observed among root explants cultured on media supplemented with 0.45 μM TDZ + 2.85 μM IAA + 1.44 μM GA3. Regenerated shoots were transferred to rooting media containing different concentrations of either IAA, indole-3-butyric acid (IBA), naphthalene acetic acid, or 2,4-dichlorophenoxyacetic acid. Most shoots developed roots on medium with 2.46 μM IBA. Rooted explants were transferred to vermiculite in Magenta containers for a 2-wk acclimatization period and then finally to plastic pots containing potting soil. The plantlets in soil were kept in growth chambers for 2 wk before transferring to greenhouse conditions.  相似文献   

15.
Callus induction and in vitro plantlet regeneration systems for safflower (Carthamus tinctorius L.) cv. Bhima using root, hypocotyl, cotyledon and leaf explants were optimized by studying the influence on organogenesis of seedling age, media factors, growth regulators and excision orientation. Supplementation of the medium with an auxin: cytokinin ratio < 1 enhanced the growth rate of callus cultures; however, for 2,4-D the ratio was > 1.34–11.41 μM concentrations of growth regulators (IAA, NAA, BA and Kinetin) in the medium were found effective for callus induction and regeneration in all explants. The calli could be maintained over 32 months. BA (4.43 μM) combined with casein hydrolysate (10 mg l-1) yielded the highest rate of shoot production on hypocotyl (3–6) and cotyledon (5–7) explants and cotyledonary derived callus (4–8). More shoots were produced on explants cut from the most basal region of cotyledons from 5 to 7-day-old seedlings than from older seedlings or more distal cut sites. Apolar placement of explants, inhibited shoot regeneration. The shoot regeneration potential remained upto 7 months in calli developed on NAA + BA. Of three media tested, MS was superior to SH-M and B5. Rooting of shoots was not efficient; 42% of the shoots were rooted on MS medium containing sucrose (7–8%) + IAA (2.8–5.7 μM). Capitula induction was observed in both callus mediated shoots on cotyledons and shoots on rooting medium with sucrose, IAA, NAA and IBA. Well developed plantlets were transferred to the field with a 34% success rate. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Summary Adventitious shoot regeneration was achieved from almond leaves, cv. Boa Casta, excised fromin vitro cultures of juvenile and adult material. Murashige and Skoog (1962) medium (MS) was found to be more efficient for adventitious shoot induction than a modified medium of Quoirin et al. (1977) when using identical growth regulator supplements. Thidiazuron (TDZ) at 4.54, 5.90, 6.81, and 9.08 μM was used in all induction media, together with indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), or a combination of IAA and 2,4-dichlorophenoxyacetic acid (2,4-D). When N6-benzyladenine (BA) was used instead of TDZ, no adventitious shoots were induced. Leaf explants of juvenile origin yielded the highest regeneration rates (40.0 and 38.2%) and required higher concentrations of TDZ for shoot induction than leaves of adult origin. An increase from 15.0 to 35.3% in the regeneration ability of adult leaf explants, tested on one of the induction media, modified medium of Quoirin et al. (1977) supplemented with 5.90 μM TDZ and 2.85 μM IAA], was achieved when donor shoots were subcultured twice on a medium with a low BA concentration of 1.33 μM.  相似文献   

17.
Shoot bud regeneration was obtained from isolated leaflets of Albizia procera cultured on MS medium with various concentrations of 6-benzyladenine (BA) and α-naphthaleneacetic acid (NAA). The highest numbers of adventitious buds were obtained on MS medium supplemented with 10 μM BA and 1 μM NAA. The replacement of 7 g l-1 Difco bacto agar with 2.6 g l-1 Phytagel in the medium enhanced adventitious bud regeneration. Further, addition of 15 μM silver nitrate promoted callus-free shoot regeneration from leaf explants. The regenerated shoot buds were elongated on MS medium containing 0.01 μM BA and 1 μM NAA. Rooting was obtained on modified MS medium supplemented with 2 μM IBA. To our knowledge this is the first report of direct regeneration of shoots from leaflet explants in A. procera, and should help facilitate genetic transformation in this species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
An efficient propagation and regeneration system via direct shoot organogenesis for an endangered species, Metabriggsia ovalifolia, was established. High activity cytokinins [6-benzyladeneine (BA) and thidiazuron (TDZ)] and low activity auxins [α-naphthaleneacetic acid (NAA), indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA)] could directly induce adventitious shoots from leaf or petiole explants within 5 weeks. Cytokinins (TDZ or BA) combined with auxin (NAA) in the induction media induced more adventitious shoots than when auxins or cytokinins were used alone. Adventitious shoots could be induced and also mass-propagated on media containing 2.5–5.0 μM TDZ (or BA) and 0.25–0.5 μM NAA. Adventitious roots differentiated at the proximal end of shoots on rooting media containing half-strength MS salts and 0.5 μM IBA, 0.5 μM NAA, 0.1% activated charcoal or no plant growth regulators. Over 90% of plantlets survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite) in basins.  相似文献   

19.
In vitro propagation of northern red oak (Quercus rubra) shoots was successful from cotyledonary node explants excised from 8-wk-old in vitro grown seedlings. Initially, four shoots per explant were obtained on Murashige and Skoog (MS) medium supplemented with 4.4 μM 6-benzylaminopurine (BA), 0.45 μM thidiazuron (TDZ), and 500 mg l−1 casein hydrolysate (CH) with a regeneration frequency of 64.7% after 3 wk. Subculturing explants (after harvesting shoots) to fresh treatment medium significantly increased shoot bud regeneration (16.6 buds per explant), but the buds failed to develop into shoots. A higher percentage (73.3%) of the explants regenerated four shoots per explant on woody plant medium (WPM) supplemented with 4.4 μM BA, 0.29 μM gibberellic acid (GA3), and 500 mg l−1 CH after 3 wk. Explants subcultured to fresh treatment medium after harvesting shoots significantly increased shoot regeneration (16 shoots per explant). Shoot elongation was achieved (4 cm) when shoots were excised and cultured on WPM supplemented with 0.44 μM BA and 0.29 μM GA3. In vitro regenerated shoots were rooted on WPM supplemented with 4.9 μM indole-3-butyric acid. A higher percentage regeneration response and shoot numbers per explant were recorded on WPM supplemented with BA and GA3, than on MS medium containing BA and TDZ. Lower concentrations of BA and GA3 were required for shoot elongation and prevention of shoot tip necrosis. Each cotyledonary node yielded approximately 20 shoots within 12 wk. Rooted plantlets were successfully acclimatized.  相似文献   

20.
Primulina tabacum is a rare and endangered species that is endemic to China. Establishing an efficient regeneration system is necessary for its conservation and reintroduction. In this study, when leaf explants collected from plants grown in four ecotypes in China are incubated on Murashige and Skoog (MS) medium containing 5.0 μM thidiazuron (TDZ) for 30 days, then transferred to medium containing 5.0 μM 6-benzyladenine (BA), adventitious shoots are then observed. Conversely, when leaf explants are incubated on medium containing 5.0 μM BA for 30 days, then transferred to medium containing 5.0 μM TDZ, somatic embryogenesis is induced. This indicates that somatic embryogenesis and shoot organogenesis could be switched simply by changing the order of two cytokinins supplemented in the culture medium. Histological investigation has revealed that embryogenic cells are induced within 30 days following incubation of explants in medium containing TDZ. Only if embryogenic cells were induced, TDZ could enhance somatic embryogenesis and BA could stimulate shoot organogenesis. When comparing explants from different ecotypes, leaf explants from Zixiadong in Hunan Province could induce low numbers (1–2) of either somatic embryos or adventitious shoots on medium containing either 5.0 μM TDZ or 5.0 μM BA, respectively. Whereas, leaf explants from plants collected from the other three ecological habitats could induce 50–70 somatic embryos/adventitious shoots per explant. Moreover, somatic embryos could induce secondary somatic embryogenesis and adventitious shoots on different media. All regenerated shoots developed adventitious roots when these are transferred to rooting medium, and over 95% of plantlets have survived following acclimatization and transfer to a potting mixture (1:1, sand:vermiculite).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号