首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The microcystins and nodularins are tumour promoting hepatotoxins that are responsible for global adverse human health effects and wildlife fatalities in countries where drinking water supplies contain cyanobacteria. The toxins function by inhibiting broad specificity Ser/Thr protein phosphatases in the host cells, thereby disrupting signal transduction pathways. A previous crystal structure of a microcystin bound to the catalytic subunit of protein phosphatase-1 (PP-1c) showed distinct changes in the active site region when compared with protein phosphatase-1 structures bound to other toxins. We have elucidated the crystal structures of the cyanotoxins, motuporin (nodularin-V) and dihydromicrocystin-LA bound to human protein phosphatase-1c (gamma isoform). The atomic structures of these complexes reveal the structural basis for inhibition of protein phosphatases by these toxins. Comparisons of the structures of the cyanobacterial toxin:phosphatase complexes explain the biochemical mechanism by which microcystins but not nodularins permanently modify their protein phosphatase targets by covalent addition to an active site cysteine residue.  相似文献   

2.
Protein phosphatase-1 and protein phosphatase-2B (calcineurin) are eukaryotic serine/threonine phosphatases that share 40% sequence identity in their catalytic subunits. Despite the similarities in sequence, these phosphatases are widely divergent when it comes to inhibition by natural product toxins, such as microcystin-LR and okadaic acid. The most prominent region of non-conserved sequence between these phosphatases corresponds to the beta12-beta13 loop of protein phosphatase-1, and the L7 loop of toxin-resistant calcineurin. In the present study, mutagenesis of residues 273-277 of the beta12-beta13 loop of the protein phosphatase-1 catalytic subunit (PP-1c) to the corresponding residues in calcineurin (312-316), resulted in a chimeric mutant that showed a decrease in sensitivity to microcystin-LR, okadaic acid, and the endogenous PP-1c inhibitor protein inhibitor-2. A crystal structure of the chimeric mutant in complex with okadaic acid was determined to 2.0-A resolution. The beta12-beta13 loop region of the mutant superimposes closely with that of wild-type PP-1c bound to okadaic acid. Systematic mutation of each residue in the beta12-beta13 loop of PP-1c showed that a single amino acid change (C273L) was the most influential in mediating sensitivity of PP-1c to toxins. Taken together, these data indicate that it is an individual amino acid residue substitution and not a change in the overall beta12-beta13 loop conformation of protein phosphatase-1 that contributes to disrupting important interactions with inhibitors such as microcystin-LR and okadaic acid.  相似文献   

3.
Clostridium botulinum C3 exoenzyme inactivates the small GTP-binding protein family Rho by ADP-ribosylating asparagine 41, which depolymerizes the actin cytoskeleton. C3 thus represents a major family of the bacterial toxins that transfer the ADP-ribose moiety of NAD to specific amino acids in acceptor proteins to modify key biological activities in eukaryotic cells, including protein synthesis, differentiation, transformation, and intracellular signaling. The 1.7 A resolution C3 exoenzyme structure establishes the conserved features of the core NAD-binding beta-sandwich fold with other ADP-ribosylating toxins despite little sequence conservation. Importantly, the central core of the C3 exoenzyme structure is distinguished by the absence of an active site loop observed in many other ADP-ribosylating toxins. Unlike the ADP-ribosylating toxins that possess the active site loop near the central core, the C3 exoenzyme replaces the active site loop with an alpha-helix, alpha3. Moreover, structural and sequence similarities with the catalytic domain of vegetative insecticidal protein 2 (VIP2), an actin ADP-ribosyltransferase, unexpectedly implicates two adjacent, protruding turns, which join beta5 and beta6 of the toxin core fold, as a novel recognition specificity motif for this newly defined toxin family. Turn 1 evidently positions the solvent-exposed, aromatic side-chain of Phe209 to interact with the hydrophobic region of Rho adjacent to its GTP-binding site. Turn 2 evidently both places the Gln212 side-chain for hydrogen bonding to recognize Rho Asn41 for nucleophilic attack on the anomeric carbon of NAD ribose and holds the key Glu214 catalytic side-chain in the adjacent catalytic pocket. This proposed bipartite ADP-ribosylating toxin turn-turn (ARTT) motif places the VIP2 and C3 toxin classes into a single ARTT family characterized by analogous target protein recognition via turn 1 aromatic and turn 2 hydrogen-bonding side-chain moieties. Turn 2 centrally anchors the catalytic Glu214 within the ARTT motif, and furthermore distinguishes the C3 toxin class by a conserved turn 2 Gln and the VIP2 binary toxin class by a conserved turn 2 Glu for appropriate target side-chain hydrogen-bonding recognition. Taken together, these structural results provide a molecular basis for understanding the coupled activity and recognition specificity for C3 and for the newly defined ARTT toxin family, which acts in the depolymerization of the actin cytoskeleton. This beta5 to beta6 region of the toxin fold represents an experimentally testable and potentially general recognition motif region for other ADP-ribosylating toxins that have a similar beta-structure framework.  相似文献   

4.
Clostridium perfringens alpha-toxin (370 residues) is a major virulence factor in the pathogenesis of gas gangrene. The toxin is composed of an N-terminal domain (1-250 residues) where lies the catalytic site and a C-terminal domain (251-370 residues), the Ca(2+)-binding domain, responsible for binding to membranes. The role of Tyr-57 and Tyr-65 close to the catalytic pocket (site) in the N-domain was investigated. Replacement of Tyr-57 and -65 with alanine, leucine, or phenylalanine did not affect the sphingomyelinase activity of the toxin for sodium deoxycholate-solubilized shingomyelin. However, the substitution of Tyr-57 and -65 with alanine or leucine resulted in a radical reduction in the hemolysis of sheep erythrocytes, the release of carboxyfluorescein from shingomyelin-cholesterol (1:1) liposomes, and a significant decrease in binding to the liposomes. The binding of variant toxins, Y57C/C169L and Y65C/C169L, labeled with the environmentally sensitive fluorophore, acrylodan, to the liposomes suggested insertion of the variants in a hydrophobic environment in the bilayer. These observations suggested that Tyr-57 and -65 play a role in the penetration of the toxin into the bilayer of membranes and access of the catalytic site to sphingomyelin in membranes, but do not participate in the enzymatic activity.  相似文献   

5.
Cyclic heptapeptide microcystins are a group of hepatoxicants which exert the cytotoxic effects by inhibiting the catalytic activities of phosphatase-2A (PP-2A) and phosphatase-1 (PP-1) and thus disrupt the normal signal transduction pathways. Microcystins interact with PP-2A and PP-1 by a two-step mechanism involving rapid binding and inactivation of protein phosphatase catalytic subunit, followed by a slower covalent interaction. It was proposed that inactivation of PP-2A/PP-1 catalytic activity by microcystins precedes covalent adduct formation. In this study, we used a biosensor based on surface plasmon resonance (SPR) to examine the effects of three microcystins, MCLR, MCRR and MCYR, on the binding between PP-2A and its substrate, phosphorylase-a (PL-a), during the first step of the interaction. The SPR biosensor provides real-time information on the association and dissociation kinetics of PL-a with immobilized PP-2A in the absence and presence of microcystins. It was found that the affinity of PL-a to microcystin-bound PP-2A was four times smaller compared to unbound PP-2A, due to 50% decreases in the association rates and two-fold increases in dissociation rates of PL-a binding to PP-2A. The results suggest that the rapid binding of microcystins to the PP-2A catalytic site leads to the formation of a noncovalent microcystin/PP-2A adduct. While the adduct formation fully inhibits the catalytic activity of PP-2A, it only results in partial inhibition of the substrate binding. The similar effects of the three microcystins on PP-2A suggest that the toxins bind to PP-2A at the same site and cause similar conformational changes. The present work also demonstrates the potential application of biosensor technology in environmental toxicological research.  相似文献   

6.
为了确定蛋白磷酸酶-1(protein phosphatase-1)的催化亚基(PP 1c)在小白鼠不同器官组织(肌肉、卵巢、肾、胃、 脾、大脑、心、肝、肺及乳腺)中的表达模式,运用RT-PCR、Western 印迹及荧光免疫组织化学技术等实验手段进行了检测 和分析.结果表明,在mRNA水平, PP-1c在大脑中表达最高,卵巢及肺中表达次之,在肌肉、肾、心、肝中表达较低,在胃 和乳腺中表达最低;在蛋白质水平,肝中表达最高,肾、大脑、肺和乳腺中表达较高,而肌肉、卵巢、心和脾中表达相对较 低,胃中表达最低.免疫荧光组织化学实验结果显示,PP 1c的表达也具有明显的组织特异性和细胞特异性.这些结果为进一 步探讨PP 1在哺乳动物不同组织器官中的功能提供了重要的实验依据.  相似文献   

7.
Protein phosphatase type-1 (PP-1) has a protease resistant catalytic core Mr = 35,000 (PP-35K) and carboxyl terminal segment which affects activity with various substrates. We found that micromolar concentration of a synthetic peptide, corresponding to residues 312-326 of the PP-1 carboxyl terminus (P312-326) that is missing from PP-35K, increased the phosphatase activity of PP-35K with phosphorylase and myosin light chains as substrates by decreasing the apparent Km without a change in Vm. Purified PP-1 and PP-35K were inhibited identically by okadaic acid, but peptide P312-326 only stimulated the activity of PP-35K, not full-length PP-1. Other peptides corresponding to the carboxyl terminus of phosphatase-2A or to the amino terminus of PP-1 did not affect the activity of PP-35K. A sequence conserved in PP-1 from different species, Pro-Ile-Thr-Pro-Pro was implicated as the active region because a derivative peptide, Ala-Pro-Ile-Thr-Pro-Pro-Ala, stimulated the activity of PP-35K to the same extent as peptide P312-326 although at higher concentrations. These results indicate that the carboxyl terminus of PP-1 interacts with the catalytic core to modulate its activity, and suggest that the physiological regulation of PP-1 may involve this segment.  相似文献   

8.
NIPP-1 is a subunit of the major nuclear protein phosphatase-1 (PP-1) in mammalian cells and potently inhibits PP-1 activity in vitro. Using yeast two-hybrid and co-sedimentation assays, we mapped a PP-1-binding site and the inhibition function to the central one-third domain of NIPP-1. Full-length NIPP-1 (351 residues) and the central domain, NIPP-1(143-217), were equally potent PP-1 inhibitors (IC50 = 0.3 nM). Synthetic peptides spanning the central domain of NIPP-1 further narrowed the PP-1 inhibitory function to residues 191-200. A second, noninhibitory PP-1-binding site was identified by far-Western assays with digoxygenin-conjugated catalytic subunit (PP-1C) and included a consensus RVXF motif (residues 200-203) found in many other PP-1-binding proteins. The substitutions, V201A and/or F203A, in the RVXF motif, or phosphorylation of Ser199 or Ser204, which are established phosphorylation sites for protein kinase A and protein kinase CK2, respectively, prevented PP-1C-binding by NIPP-1(191-210) in the far-Western assay. NIPP-1(191-210) competed for PP-1 inhibition by full-length NIPP-1(1-351), inhibitor-1 and inhibitor-2, and dissociated PP-1C from inhibitor-1- and NIPP-1(143-217)-Sepharose but not from full-length NIPP-1(1-351)-Sepharose. Together, these data identified some of the key elements in the central domain of NIPP-1 that regulate PP-1 activity and suggested that the flanking sequences stabilize the association of NIPP-1 with PP-1C.  相似文献   

9.
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH – minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.  相似文献   

10.
We have determined the three-dimensional structure of the potassium channel inhibitor HsTX1, using nuclear magnetic resonance and molecular modeling. This protein belongs to the scorpion short toxin family, which essentially contains potassium channel blockers of 29 to 39 amino acids and three disulfide bridges. It is highly active on voltage-gated Kv1.3 potassium channels. Furthermore, it has the particularity to possess a fourth disulfide bridge. We show that HsTX1 has a fold similar to that of the three-disulfide-bridged toxins and conserves the hydrophobic core found in the scorpion short toxins. Thus, the fourth bridge has no influence on the global conformation of HsTX1. Most residues spatially analogous to those interacting with voltage-gated potassium channels in the three-disulfide-bridged toxins are conserved in HsTX1. Thus, we propose that Tyr21, Lys23, Met25, and Asn26 are involved in the biological activity of HsTX1. As an additional positively charged residue is always spatially close to the aromatic residue in toxins blocking the voltage-gated potassium channels, and as previous mutagenesis experiments have shown the critical role played by the C-terminus in HsTX1, we suggest that Arg33 is also important for the activity of the four disulfide-bridged toxin. Docking calculations confirm that, if Lys23 and Met25 interact with the GYGDMH motif of Kv1.3, Arg33 can contact Asp386 and, thus, play the role of the additional positively charged residue of the toxin functional site. This original configuration of the binding site of HsTX1 for Kv1.3, if confirmed experimentally, offers new structural possibilities for the construction of a molecule blocking the voltage-gated potassium channels.  相似文献   

11.
The action of Clostridium difficile toxins A and B depends on processing and translocation of the catalytic glucosyltransferase domain into the cytosol of target cells where Rho GTPases are modified. Here we studied the processing of the toxins. Dithiothreitol and beta-mercaptoethanol induced auto-cleavage of purified native toxin A and toxin B into approximately 250/210- and approximately 63-kDa fragments. The 63-kDa fragment was identified by mass spectrometric analysis as the N-terminal glucosyltransferase domain. This cleavage was blocked by N-ethylmaleimide or iodoacetamide. Exchange of cysteine 698, histidine 653, or aspartate 587 of toxin B prevented cleavage of full-length recombinant toxin B and of an N-terminal fragment covering residues 1-955 and inhibited cytotoxicity of full-length toxin B. Dithiothreitol synergistically increased the effect of myo-inositol hexakisphosphate, which has been reported to facilitate auto-cleavage of toxin B (Reineke, J., Tenzer, S., Rupnik, M., Koschinski, A., Hasselmayer, O., Schrattenholz, A., Schild, H., and Von Eichel-Streiber, C. (2007) Nature 446, 415-419). N-Ethylmaleimide blocked auto-cleavage induced by the addition of myo-inositol hexakisphosphate, suggesting that cysteine residues are essential for the processing of clostridial glucosylating toxins. Our data indicate that clostridial glucosylating cytotoxins possess an inherent cysteine protease activity related to the cysteine protease of Vibrio cholerae RTX toxin, which is responsible for auto-cleavage of glucosylating toxins.  相似文献   

12.
The glycogen-associated form of protein phosphatase-1 (PP-1G) is a heterodimer comprising a 37-kDa catalytic (C) subunit and a 161-kDa glycogen-binding (G) subunit, the latter being phosphorylated by cAMP-dependent protein kinase at two serine residues (site 1 and site 2). Here the amino acid sequence surrounding site 2 has been determined and this phosphoserine shown to lie 19 residues C-terminal to site 1 in the primary structure. The sequence in this region is: (sequence; see text) At physiological ionic strength, phosphorylation of glycogen-bound PP-1G was found to release all the phosphatase activity from glycogen. The released activity was free C subunit, and not PP-1G, while the phospho-G subunit remained bound to glycogen. Dissociation reflected a greater than or equal to 4000-fold decrease in affinity of C subunit for G subunit and was readily reversed by dephosphorylation. Phosphorylation and dephosphorylation of site 2 was rate-limiting for dissociation and reassociation of C subunit. Release of C subunit was also induced by the binding of anti-site-1 Fab fragments to glycogen-bound PP-1G. At near physiological ionic strength, PP-1G and glycogen concentration, site 2 was autodephosphorylated by PP-1G with a t0.5 of 2.6 min at 30 degrees C, approximately 100-fold slower than the t0.5 for dephosphorylation of glycogen phosphorylase under the same conditions. Site 2 was a good substrate for all three type-2 phosphatases (2A, 2B and 2C) with t0.5 values less than those toward the alpha subunit of phosphorylase kinase. At the levels present in skeletal muscle, the type-2A and type-2B phosphatases are potentially capable of dephosphorylating site 2 in vivo within seconds. Site 1 was at least 10-fold less effective than site 2 as a substrate for all four phosphatases. In conjunction with information presented in the following paper in this issue of this journal, the results substantiate the hypothesis that PP-1 activity towards the glycogen-metabolising enzymes is regulated in vivo by reversible phosphorylation of a targetting subunit (G) that directs the C subunit to glycogen--protein particles. The efficient dephosphorylation of site 2 by the Ca2+/calmodulin-stimulated protein phosphatase (2B) provides a potential mechanism for regulating PP-1 activity in response to Ca2+, and represents an example of a protein phosphatase cascade.  相似文献   

13.
Functional comparison of the NAD binding cleft of ADP-ribosylating toxins   总被引:2,自引:0,他引:2  
Dolan KM  Lindenmayer G  Olson JC 《Biochemistry》2000,39(28):8266-8275
Although a common core structure forms the active site of ADP-ribosylating (ADPRT) toxins, the limited-sequence homology within this region suggests that different mechanisms are being used by toxins to perform their shared function. To explain differences in their mechanisms of NAD binding and hydrolysis, the functional interrelationship of residues predicted to perform similar functions in the beta3-strand of the NAD binding cleft of different ADPRT toxins was compared. Replacing Tyr54 in the A-subunit of diphtheria toxin (DTA) with a serine, its functional homologue in cholera toxin (CT), resulted in the loss of catalytic function but not NAD binding. The catalytic role of the aromatic portion of Tyr54 in the ADPRT reaction was confirmed by the ability of a Tyr54-to-phenylalanine DTA mutant to retain ADPRT activity. In reciprocal studies, positioning a tyrosine in the beta3-strand of the A1-subunit of CT (CTA1) caused both loss of function and altered structure. The restricted flexibility of the CTA1 active site relative to function became evident upon the loss of ADPRT activity when a conservative Val60-to-leucine mutation was performed. We conclude from our studies that DT and CT maintain a similar mechanism of NAD binding but differ in their mechanisms of NAD hydrolysis. The aromatic moiety at position 54 in DT is integral to NAD hydrolysis, while NAD hydrolysis in CT appears highly dependent on the precise positioning of specific residues within the beta3-strand of the active-site cleft.  相似文献   

14.
Amphipathic protein toxins from tarantula venom inhibit voltage-activated potassium (Kv) channels by binding to a critical helix-turn-helix motif termed the voltage sensor paddle. Although these toxins partition into membranes to bind the paddle motif, their structure and orientation within the membrane are unknown. We investigated the interaction of a tarantula toxin named SGTx with membranes using both fluorescence and NMR spectroscopy. Depth-dependent fluorescence-quenching experiments with brominated lipids suggest that Trp30 in SGTx is positioned ∼9 Å from the center of the bilayer. NMR spectra reveal that the inhibitor cystine knot structure of the toxin does not radically change upon membrane partitioning. Transferred cross-saturation NMR experiments indicate that the toxin's hydrophobic protrusion contacts the hydrophobic core of the membrane, whereas most surrounding polar residues remain at interfacial regions of the bilayer. The inferred orientation of the toxin reveals a twofold symmetry in the arrangement of basic and hydrophobic residues, a feature that is conserved among tarantula toxins. These results have important implications for regions of the toxin involved in recognizing membranes and voltage-sensor paddles, and for the mechanisms by which tarantula toxins alter the activity of different types of ion channels.  相似文献   

15.
The three-dimensional structure of hanatoxin1 (HaTx1) was determined by using NMR spectroscopy. HaTx1 is a 35 amino acid residue peptide toxin that inhibits the drk1 voltage-gated K(+) channel not by blocking the pore, but by altering the energetics of gating. Both the amino acid sequence of HaTx1 and its unique mechanism of action distinguish this toxin from the previously described K(+) channel inhibitors. Unlike most other K(+) channel-blocking toxins, HaTx1 adopts an "inhibitor cystine knot" motif and is composed of two beta-strands, strand I for residues 19-21 and strand II for residues 28-30, connected by four chain reversals. A comparison of the surface features of HaTx1 with those of other gating modifier toxins of voltage-gated Ca(2+) and Na(+) channels suggests that the combination of a hydrophobic patch and surrounding charged residues is principally responsible for the binding of gating modifier toxins to voltage-gated ion channels.  相似文献   

16.
1. The inhibition of the catalytic subunit of protein phosphatase-1 (PP-1c) by the regulatory subunit of cAMP-dependent protein kinase II (RII) was studied. 2. Phosphorylation or thiophosphorylation of RII increased its inhibitory potency up to 4- and 6-fold and rendered it competitive with respect to the substrate of PP-1c, phosphorylase a. The Ki values for thiophospho-RII and phospho-RII were 200 and 500 nM, respectively. 3. Though PP-1c was able to release phosphate from phospho-RII, its activity once incubated with phospho-RII, remained inhibited even 80% of the phosphate was released from phospho-RII. 4. The catalytic subunit of cAMP-dependent protein kinase was effective in suspending the inhibition employed either before or after the addition of phospho-RII to PP-1c. 5. No exclusive bindings of thiophospho-RII and heat-stable protein inhibitors to the PP-1c could be proved by double inhibition studies, however some synergism was observed in their effect.  相似文献   

17.
Structure of ricin A-chain at 2.5 A   总被引:13,自引:0,他引:13  
Ricin has been refined in a crystallographic sense to 2.5 A resolution and the model for the A-chain (RTA) is described in detail. Because RTA is the first member of the class of plant toxins to be analyzed, this model probably defines the major structural characteristics of the entire family of these medically important proteins. Explanations are provided to rationalize amino acids that are conserved between RTA and a number of homologous plant and bacterial toxins. Eight invariant residues appear to be involved in creating or stabilizing the active site. In the active site Arg180 and Glu177 are hydrogen bonded to each other and also coordinate a water molecule; each of these groups may be important in the N-glycosidation reaction. Several other polar residues may play lesser roles in the mechanism, including tyrosines 80 and 123 and asparagines 78 and 209. A number of conserved hydrophobic residues are seen to cluster within several patches and probably drive the overall folding of the toxin molecule.  相似文献   

18.
Chen S  Karalewitz AP  Barbieri JT 《Biochemistry》2012,51(18):3941-3947
The clostridial neurotoxins are among the most potent protein toxins for humans and are responsible for botulism, a flaccid paralysis elicited by the botulinum toxins (BoNT), and spastic paralysis elicited by tetanus toxin (TeNT). Seven serotypes of botulinum neurotoxins (A-G) and tetanus toxin showed different toxicities and cleave their substrates with different efficiencies. However, the molecular basis of their different catalytic activities with respect to their substrates is not clear. BoNT/B light chain (LC/B) and TeNT light chain (LC/T) cleave vesicle-associated membrane protein 2 (VAMP2) at the same scissile bond but possess different catalytic activities and substrate requirements, which make them the best candidates for studying the mechanisms of their different catalytic activities. The recognition of five major P sites of VAMP2 (P7, P6, P1, P1', and P2') and fine alignment of sites P2 and P3 and sites P2 and P4 by LC/B and LC/T, respectively, contributed to their substrate recognition and catalysis. Significantly, we found that the S1 pocket mutation LC/T(K(168)E) increased the rate of native VAMP2 cleavage so that it approached the rate of LC/B, which explains the molecular basis for the lower k(cat) that LC/T possesses for VAMP2 cleavage relative to that of LC/B. This analysis explains the molecular basis underlying the VAMP2 recognition and cleavage by LC/B and LC/T and provides insight that may extend the pharmacologic utility of these neurological reagents.  相似文献   

19.
We have examined the roles of type-1 (PP-1) and type-2A (PP-2A) protein-serine/threonine phosphatases in the mechanism of activation of p34cdc2/cyclin B protein kinase in Xenopus egg extracts. p34cdc2/cyclin B is prematurely activated in the extracts by inhibition of PP-2A by okadaic acid but not by specific inhibition of PP-1 by inhibitor-2. Activation of the kinase can be blocked by addition of the purified catalytic subunit of PP-2A at a twofold excess over the activity in the extract. The catalytic subunit of PP-1 can also block kinase activation, but very high levels of activity are required. Activation of p34cdc2/cyclin B protein kinase requires dephosphorylation of p34cdc2 on Tyr15. This reaction is catalysed by cdc25-C phosphatase that is itself activated by phosphorylation. We show that, in interphase extracts, inhibition of PP-2A by okadaic acid completely blocks cdc25-C dephosphorylation, whereas inhibition of PP-1 by specific inhibitors has no effect. This indicates that a type-2A protein phosphatase negatively regulates p34cdc2/cyclin B protein kinase activation primarily by maintaining cdc25-C phosphatase in a dephosphorylated, low activity state. In extracts containing active p34cdc2/cyclin B protein kinase, dephosphorylation of cdc25-C is inhibited, whereas the activity of PP-2A (and PP-1) towards other substrates is unaffected. We propose that this specific inhibition of cdc25-C dephosphorylation is part of a positive feedback loop that also involves direct phosphorylation and activation of cdc25-C by p34cdc2/cyclin B. Dephosphorylation of cdc25-C is also inhibited when cyclin A-dependent protein kinase is active, and this may explain the potentiation of p34cdc2/cyclin B protein kinase activation by cyclin A. In extracts supplemented with nuclei, the block on p34cdc2/cyclin B activation by unreplicated DNA is abolished when PP-2A is inhibited or when stably phosphorylated cdc25-C is added, but not when PP-1 is specifically inhibited. This suggests that unreplicated DNA inhibits p34cdc2/cyclin B activation by maintaining cdc25-C in a low activity, dephosphorylated state, probably by keeping the activity of a type-2A protein phosphatase towards cdc25-C at a high level.  相似文献   

20.
To date, investigations of the hydrophobic substrate site of the insect Delta class glutathione transferase are limited in number. In the present study, putative hydrophobic site residues of AdGSTD4-4 have been proposed and characterized. These residues are Gln-112, Thr-174, Phe-212, Arg-214, Tyr-215 and Phe-216. It was found that Gln-112 does not contribute significantly to the catalytic properties of AdGSTD4-4. Arg-214, Tyr-215 and Phe-216 made contributions to catalytic properties and the rate-limiting step. Thr-174 and Phe-212 appeared to be important in enzymatic catalysis by stabilizing the active site β1-α1 loop on which the critical catalytic residue Ser-9 is located. The aromatic Phe-212 pi cloud appears to be important for interactions with its hydrophobic size representing an almost equally important factor. The data suggests that these residues are not directly involved in catalysis but exert their influence through secondary interactions. In addition, active site rearrangements occur to bring different residues into play even for conjugation through the same mechanisms. Therefore, due to the conformational rearrangements topologically equivalent residues observed in crystal structures may not perform equivalent roles in catalysis in different GST classes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号