首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
酵母基因中断技术是研究酵母基因功能的重要手段,自80年代初诞生以来经历了不断的改进和发展.PCR介导的酵母基因中断技术,大大简化了操作,实现了酵母基因的精确缺失;酵母基因的多重中断技术,可在酵母内实现多个基因的中断;可进行大规模基因中断和功能分析的酵母基因中断技术,适应了在酵母全基因组测序完成的情况下进行功能基因组学研究的要求.酵母基因中断技术对人类基因功能研究也有很大启示作用.  相似文献   

2.
植物功能基因组学研究进展   总被引:5,自引:0,他引:5  
植物基因组研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究.本简要介绍了植物功能基因组的主要研究方法,如基因表达系列分析法、表达序列标签法、差异表达谱基因芯片法、蛋白质组学分析法以及生物信息学等及其研究现状,并展望了植物功能基因组学的应用前景.  相似文献   

3.
In Kellis et al. (2003), we reported the genome sequences of S. paradoxus, S. mikatae, and S. bayanus and compared these three yeast species to their close relative, S. cerevisiae. Genomewide comparative analysis allowed the identification of functionally important sequences, both coding and noncoding. In this companion paper we describe the mathematical and algorithmic results underpinning the analysis of these genomes. (1) We present methods for the automatic determination of genome correspondence. The algorithms enabled the automatic identification of orthologs for more than 90% of genes and intergenic regions across the four species despite the large number of duplicated genes in the yeast genome. The remaining ambiguities in the gene correspondence revealed recent gene family expansions in regions of rapid genomic change. (2) We present methods for the identification of protein-coding genes based on their patterns of nucleotide conservation across related species. We observed the pressure to conserve the reading frame of functional proteins and developed a test for gene identification with high sensitivity and specificity. We used this test to revisit the genome of S. cerevisiae, reducing the overall gene count by 500 genes (10% of previously annotated genes) and refining the gene structure of hundreds of genes. (3) We present novel methods for the systematic de novo identification of regulatory motifs. The methods do not rely on previous knowledge of gene function and in that way differ from the current literature on computational motif discovery. Based on genomewide conservation patterns of known motifs, we developed three conservation criteria that we used to discover novel motifs. We used an enumeration approach to select strongly conserved motif cores, which we extended and collapsed into a small number of candidate regulatory motifs. These include most previously known regulatory motifs as well as several noteworthy novel motifs. The majority of discovered motifs are enriched in functionally related genes, allowing us to infer a candidate function for novel motifs. Our results demonstrate the power of comparative genomics to further our understanding of any species. Our methods are validated by the extensive experimental knowledge in yeast and will be invaluable in the study of complex genomes like that of the human.  相似文献   

4.
5.
6.
The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet’s stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.  相似文献   

7.
Redundancy is a salient feature of all living organisms' genome. The yeast genome contains a large number of gene families of previously uncharacterized functions that can be used to explore the functional significance of structural redundancy in a systematic manner. In this work, we describe results on a three-member gene family with moderately divergent sequences (YOL055c, YPL258c and YPR121w ). We demonstrate that two members are isofunctional and encode a hydroxymethylpyrimidine phosphate (HMP-P) kinase (EC 2.7.4.7), an activity required for the final steps of thiamine biosynthesis, whose genes were not previously known in yeast. In addition, we show that the three genes are each composed of two distinct domains, each corresponding to individual genes in prokaryotes, suggesting gene fusion during evolution. The function of the carboxy-terminal part of the proteins is not yet understood, but it is not required for HMP-P kinase activity. Expression of all three genes is regulated in the same way. Several other examples of gene fusions exist in the same biosynthetic pathway when eukaryotic genes are compared with prokaryotic ones.  相似文献   

8.
植物的功能基因组学研究进展   总被引:38,自引:1,他引:38  
李子银  陈受宜 《遗传》2000,22(1):0-60
基因组研究计划包括以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学两方面的内容。目前基因功能鉴定的方法主要有:基因表达的系统分析(SAGE)、cDNA微阵列、DNA(基因)芯片、蛋白组技术以及基于转座子标签和T_DNA标签的反求遗传学技术等。本文对上述各种技术的优缺点以及它们在植物基因功能鉴定中的应用进行了综述。 Abstract: The genome projects comprise the structural genomics focusing on determining the complete sequences of the genome and the functional genomics focusing on elucidating the biological function of genes.The rapidly evolving tools for functional genomics research include Serial Analysis of Gene Expression (SAGE),cDNA microarray,DNA (or gene) chips,proteome project and the reverse genetics technique based on the well-established transposon tagging and T?DNA tagging systems.In this paper,the advantages and disadvantages of such techniques and application of these techniques in plant functional genomics research are reviewed and future prospective are also presented.  相似文献   

9.
In the post-genome sequencing era the functional analysis of newly discovered proteins becomes more and more important. In this report we describe a genetic approach to the post-translational regulation of protein function in Saccharomyces cerevisiae by creating conditional lethal mutants. The yeast ORFs YDL139c, YDL147w, ERG3 and ERG11 were tagged with sequences encoding the hormone-binding domains of mammalian steroid receptors by PCR-mediated, targeted integration into the yeast genome. We found that the function of the chimeric proteins is regulated in a hormone-dependent way. This technique provides another important tool for the functional analysis of the yeast proteome.  相似文献   

10.
Unicellular algae serve as models for the study and discovery of metabolic pathways, for the functional dissection of cell biological processes such as organellar division and cell motility, and for the identification of novel genes and gene functions. The recent completion of several algal genome sequences and expressed sequence tag collections and the establishment of nuclear and organellar transformation methods has opened the way for functional genomics approaches using algal model systems. The thermo-acidophilic unicellular red alga Galdieria sulphuraria represents a particularly interesting species for a genomics approach owing to its extraordinary metabolic versatility such as heterotrophic and mixotrophic growth on more than 50 different carbon sources and its adaptation to hot acidic environments. However, the ab initio prediction of genes required for unknown metabolic pathways from genome sequences is not trivial. A compelling strategy for gene identification is the comparison of similarly sized genomes of related organisms with different physiologies. Using this approach, candidate genes were identified that are critical to the metabolic versatility of Galdieria. Expressed sequence tags and high-throughput genomic sequence reads covering >70% of the G. sulphuraria genome were compared to the genome of the unicellular, obligate photoautotrophic red alga Cyanidioschyzon merolae. More than 30% of the Galdieria sequences did not relate to any of the Cyanidioschyzon genes. A closer inspection of these sequences revealed a large number of membrane transporters and enzymes of carbohydrate metabolism that are unique to Galdieria. Based on these data, it is proposed that genes involved in the uptake of reduced carbon compounds and enzymes involved in their metabolism are crucial to the metabolic flexibility of G. sulphuraria.  相似文献   

11.
The yeast genetics community has embraced genomic biology, and there is a general understanding that obtaining a full encyclopedia of functions of the approximately 6000 genes is a worthwhile goal. The yeast literature comprises over 40,000 research papers, and the number of yeast researchers exceeds the number of genes. There are mutated and tagged alleles for virtually every gene, and hundreds of high-throughput data sets and computational analyses have been described. Why, then, are there >1000 genes still listed as uncharacterized on the Saccharomyces Genome Database, 10 years after sequencing the genome of this powerful model organism? Examination of the currently uncharacterized gene set suggests that while some are small or newly discovered, the vast majority were evident from the initial genome sequence. Most are present in multiple genomics data sets, which may provide clues to function. In addition, roughly half contain recognizable protein domains, and many of these suggest specific metabolic activities. Notably, the uncharacterized gene set is highly enriched for genes whose only homologs are in other fungi. Achieving a full catalog of yeast gene functions may require a greater focus on the life of yeast outside the laboratory.  相似文献   

12.
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.  相似文献   

13.
Ascidians, or sea squirts, are lower chordates, and share basic gene repertoires and many characteristics, both developmental and physiological, with vertebrates. Therefore, decoding cis-regulatory systems in ascidians will contribute toward elucidating the genetic regulatory systems underlying the developmental and physiological processes of vertebrates. cis-Regulatory DNAs can also be used for tissue-specific genetic manipulation, a powerful tool for studying ascidian development and physiology. Because the ascidian genome is compact compared with vertebrate genomes, both intergenic regions and introns are relatively small in ascidians. Short upstream intergenic regions contain a complete set of cis-regulatory elements for spatially regulated expression of a majority of ascidian genes. These features of the ascidian genome are a great advantage in identifying cis-regulatory sequences and in analyzing their functions. Function of cis-regulatory DNAs has been analyzed for a number of tissue-specific and developmentally regulated genes of ascidians by introducing promoter-reporter fusion constructs into ascidian embryos. The availability of the whole genome sequences of the two Ciona species, Ciona intestinalis and Ciona savignyi, facilitates comparative genomics approaches to identify cis-regulatory DNAs. Recent studies demonstrate that computational methods can help identify cis-regulatory elements in the ascidian genome. This review presents a comprehensive list of ascidian genes whose cis-regulatory regions have been subjected to functional analysis, and highlights the recent advances in bioinformatics and comparative genomics approaches to cis-regulatory systems in ascidians.  相似文献   

14.
功能基因组学的研究方法   总被引:10,自引:1,他引:9  
基因组学的研究已从结构基因组学转向功能基因组学,功能基因组学时代对于基因功能的研究也由单一基因转向大规模,批量分析,本综述了功能基因组学的研究内容与方法,主要包括:差异显示反转录PCR,基因表达序列分析(SAGE),微点阵,遗传足迹法,反求遗传学,蛋白质组学和生物信息学等新方法。  相似文献   

15.
Interpreting genome sequences requires the functional analysis of thousands of predicted proteins, many of which are uncharacterized and without obvious homologs. To assess whether the roles of large sets of uncharacterized genes can be assigned by targeted application of a suite of technologies, we used four complementary protein-based methods to analyze a set of 100 uncharacterized but essential open reading frames (ORFs) of the yeast Saccharomyces cerevisiae. These proteins were subjected to affinity purification and mass spectrometry analysis to identify copurifying proteins, two-hybrid analysis to identify interacting proteins, fluorescence microscopy to localize the proteins, and structure prediction methodology to predict structural domains or identify remote homologies. Integration of the data assigned function to 48 ORFs using at least two of the Gene Ontology (GO) categories of biological process, molecular function, and cellular component; 77 ORFs were annotated by at least one method. This combination of technologies, coupled with annotation using GO, is a powerful approach to classifying genes.  相似文献   

16.
Using small molecule probes to understand gene function is an attractive approach that allows functional characterization of genes that are dispensable in standard laboratory conditions and provides insight into the mode of action of these compounds. Using chemogenomic assays we previously identified yeast Crg1, an uncharacterized SAM-dependent methyltransferase, as a novel interactor of the protein phosphatase inhibitor cantharidin. In this study we used a combinatorial approach that exploits contemporary high-throughput techniques available in Saccharomyces cerevisiae combined with rigorous biological follow-up to characterize the interaction of Crg1 with cantharidin. Biochemical analysis of this enzyme followed by a systematic analysis of the interactome and lipidome of CRG1 mutants revealed that Crg1, a stress-responsive SAM-dependent methyltransferase, methylates cantharidin in vitro. Chemogenomic assays uncovered that lipid-related processes are essential for cantharidin resistance in cells sensitized by deletion of the CRG1 gene. Lipidome-wide analysis of mutants further showed that cantharidin induces alterations in glycerophospholipid and sphingolipid abundance in a Crg1-dependent manner. We propose that Crg1 is a small molecule methyltransferase important for maintaining lipid homeostasis in response to drug perturbation. This approach demonstrates the value of combining chemical genomics with other systems-based methods for characterizing proteins and elucidating previously unknown mechanisms of action of small molecule inhibitors.  相似文献   

17.
Lower eukaryotes of the kingdom Fungi include a variety of biotechnologically important yeast species that are in the focus of genome research for more than a decade. Due to the rapid progress in ultra-fast sequencing technologies, the amount of available yeast genome data increases steadily. Thus, an efficient bioinformatics platform is required that covers genome assembly, eukaryotic gene prediction, genome annotation, comparative yeast genomics, and metabolic pathway reconstruction. Here, we present a bioinformatics platform for yeast genomics named RAPYD addressing the key requirements of extensive yeast sequence data analysis. The first step is a comprehensive regional and functional annotation of a yeast genome. A region prediction pipeline was implemented to obtain reliable and high-quality predictions of coding sequences and further genome features. Functions of coding sequences are automatically determined using a configurable prediction pipeline. Based on the resulting functional annotations, a metabolic pathway reconstruction module can be utilized to rapidly generate an overview of organism-specific features and metabolic blueprints. In a final analysis step shared and divergent features of closely related yeast strains can be explored using the comparative genomics module. An in-depth application example of the yeast Meyerozyma guilliermondii illustrates the functionality of RAPYD. A user-friendly web interface is available at https://rapyd.cebitec.uni-bielefeld.de.  相似文献   

18.
Saccharomyces cerevisiae, for centuries the yeast that has been the workhorse for the fermentative production of ethanol, is now also a model system for biological research. The recent development of chromosome-splitting techniques has enabled the manipulation of the yeast genome on a large scale, and this has allowed us to explore questions with both biological and industrial relevance, the number of genes required for growth and the genome organization responsible for the ethanol production. To approach these questions, we successively deleted portions of the yeast genome and constructed a mutant that had lost about 5% of the genome and that gave an increased yield of ethanol and glycerol while showing levels of resistance to various stresses nearly equivalent to those of the parental strain. Further systematic deletion could lead to the formation of a eukaryotic cell with a minimum set of genes exhibiting appropriately altered regulation for enhanced metabolite production. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The completion of the genome sequence of the budding yeast Saccharomyces cerevisiae marks the dawn of an exciting new era in eukaryotic biology that will bring with it a new understanding of yeast, other model organisms, and human beings. This body of sequence data benefits yeast researchers by obviating the need for piecemeal sequencing of genes, and allows researchers working with other organisms to tap into experimental advantages inherent in the yeast system and learn from functionally characterized yeast gene products which are their proteins of interest. In addition, the yeast post-genome sequence era is serving as a testing ground for powerful new technologies, and proven experimental approaches are being applied for the first time in a comprehensive fashion on a complete eukaryotic gene repertoire.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号