首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Abstract— The effect of excess leucine in the diet on serotonin metabolism in the brain was investigated in experimental animals. It was found that:
(1) Animals receiving diets containing 3 % and 8 % leucine and those receiving jowar diets had significantly lower levels of serotonin in the brain.
(2) Intraperitoneal administration of the precursor amino acid 5-HTP increased the serotonin concentration in brain in both control and leucine-fed animals. However, the serotonin concentration in leucine-fed animals was significantly lower than that of pairfed controls. Larger amounts of the synthesized serotonin were found to be catabolized in 3 hr in leucine-fed animals than in control animals.
(3) The in vitro uptake of [14C]5-HTP by brain slices of animals fed leucine was found to be similar to that of control animals.
(4) The basal concentration of 5-HIAA in brain was higher in leucine-fed animals, suggesting a higher rate of catabolism of serotonin.
(5) Administration of nicotinic acid resulted in a further fall of serotonin concentration in the brains of leucine-fed animals but not in control animals.  相似文献   

3.
Abstract— The oxidation of l -[U-14C]leucine and l -[l-14C]leucine at varying concentrations from 0.1 to 5mM to CO2 and the incorporation into cerebral lipids and proteins by brain slices from 1-week old rats were markedly stimulated by glucose. Although the addition of S mM-dl -3-hydroxybutyrate had no effect on the metabolism of [U-14C]leucine by brain slices from suckling rats, the stimulatory effects of glucose on the metabolism of l -[U-14C]leucine were markedly reduced in the presence of dl -3-hydroxybutyrate. The stimulatory effect of glucose on leucine oxidation was, however, not observed in adult rat brain. Furthermore, the incorporation of leucine-carbon into cerebral lipids and proteins was also very low in the adult brain. The incorporation of l -[U-14C]leucine into cerebral lipids by cortex slices was higher during the first 2 postnatal weeks, which then declined to the adult level. During this time span, the oxidation of l -[U-14C]leucine to CO2 remained relatively unchanged. The incorporation in vivo of D-3-hydroxy[3-14C]butyrate into cerebral lipids was markedly decreased by acute hyperleucinemia induced by injecting leucine into 9-day old rats. In in vitro experiments, 5 mM-leucine had no effect on the oxidation of [U-14C]glucose to CO2 or its incorporation into lipids by brain slices from 1-week old rats. However, 5 mM-leucine inhibited the oxidation of d -3-hydroxy-[3-14C]butyrate, [3-14C]acetoacetate and [1-14C]acetate to CO2 by brain slices, but their incorporation into cerebral lipids was not affected by leucine. In contrast 2-oxo-4-methylvalerate, a deaminated metabolite of leucine, markedly inhibited both the oxidation to CO2 and the incorporation into lipids of labelled glucose, ketone bodies and acetate by cortex slices from 1-week old rats. These findings suggest that the reduction in the incorporation in vivo of d -3-hydroxy[3-14C]butyrate into cerebral lipids in rats injected with leucine is most likely caused by 2-oxo-4-methylvalerate formed from leucine. Since the concentrations of leucine and 2-oxo-4-methylvalerate in plasma of untreated patients with maple-syrup urine disease are markedly elevated, our findings are compatible with the possibility that an alteration in the metabolism of glucose and ketone bodies in the brain may contribute to the pathophysiology of this disease.  相似文献   

4.
5.
Purified neuronal and glial nuclei were separated from rat brain cells. The fraction rich in neuronal nuclei contained 68 ± 9 per cent neuronal nuclei and the fraction rich in glial nuclei contained 89 ± 6 per cent glial nuclei. The fraction rich in neuronal nuclei isolated from cells of adult rat brain incorporated l -[4,5-3H]leucine into TCA-insoluble material at a rate comparable to those of the microsomal and the soluble fractions of the brain, and at a much higher rate than the fraction rich in glial nuclei. The proteins soluble in buffered-saline, the acid-soluble deoxyribonucleoproteins, and the residual proteins of the neuronal nuclei are apparently the proteins which account for the higher specific activity of neuronal proteins compared with glial nuclear proteins. In liver and kidney, the incorporation of [3H]leucine into nuclear proteins was lower than into other subcellular fractions from the same organs.  相似文献   

6.
—Intracisternally injected l or d-[14C]leucine was retained longer in the brains of morphine-treated rats than in saline-injected control animals. This resulted in higher levels of the labelled leucine and of labelled metabolites of the l-isomer in free pools of brain tissue. However, the absolute levels of brain amino acids and the relative distribution of radioactivity among l-leucine metabolites in brain were unaffected by treatment with morphine, indicating that no disturbance of leucine oxidation through the citric acid cycle was produced by the drug. The inhibition of protein synthesis caused by acute administration of morphine was calculated to be greater than previously reported since morphine treatment increased the specific radioactivity of the free pool of leucine in brain following the intracisternal injection of the labelled amino acid. Possible mechanisms responsible for these morphine effects are discussed.  相似文献   

7.
8.
脑啡肽对小鼠神经母细胞瘤细胞脂褐素影响的实验研究   总被引:1,自引:0,他引:1  
本文应用小鼠神经母细胞瘤细胞A2(NB-A2)无血清培养建立的神经细胞老化实验研究模型,以显微荧光分光光度术测定单个细胞内脂褐素荧光值作为细胞老化指标,观察了脑啡肽(LE)对NBA2细胞内脂褐素荧光值的影响。结果表明LE可显著降低细胞内的脂褐素荧光值(P〈0.01)。提示LE可延缓NBA2细胞的老化进程。  相似文献   

9.
Brain cortex slices from fed, 48 h and 120 h fasted rats were incubated and 14CO2 was measured from (a) [U-14C]glucose (5 mm ) either alone or in the presence of l -lcucine (0.1 or 1 mm ), and (b) [U-14C]leucine or [l-14C]leucine at 0.1 or 1 mm with or without glucose (5 mm ). In other experiments, sodium dl -3-hydroxybutyrate (3-OHB) or acetoacetate (AcAc) at 1 or 5 mm were added in the above incubation mixture. The rate of conversion of [U14C]glucose to CO2 was decreased 20% by leucine at 1 mm and 30–50% by 3-OHB at 1 or 5 mm but not by leucine at 0.1 mm . The effects of 3-OHB and of leucine (1 mm ) were not additive. The effects of leucine were similar in the fed and fasted rats. The rate of conversion of [U-14C]leucine or [l-,4C]leucine to 14CO2 at 0.1 mm and 1.0 mm was increased by glucose (35%) in the fed or fasted rats. Ketone bodies in the absence of glucose had no effect on leucine oxidation. However, the stimulatory effect of glucose on the rate of conversion of leucine to CO2 was inhibited by 3-OHB at 5 mm . These results suggest that (a) leucine in increased concentrations (1 mm ) may reduce glucose oxidation by brain cortex while itself becoming an oxidative fuel for brain, and (b) leucine oxidation by brain may be influenced by the prevailing glucose and ketone concentrations.  相似文献   

10.
Abstract– 14CO2 production and 14C incorporation into proteins was studied in isolated rat sciatic nerves during incubation with 0.1 mM-[1-14C]leucine. Rats were made diabetic with streptozotocin. Nerves from diabetic rats incubated with glucose oxidized more [14C]leucine than controls. This difference was abolished in the presence of insulin (1 mU/ml). The effects of diabetes and insulin on leucine oxidation could not be demonstrated in the absence of glucose. Insulin stimulated the incorporation of [14C] from leucine into proteins by nerves from controls and diabetic rats.
Nerves undergoing Wallerian degeneration showed a marked increase in DNA content and stimulated incorporation of [14C]leucine into proteins. 14CO2 production from leucine proceeded at 75% of the rate observed in intact nerves. Neither insulin nor diabetes affected leucine metabolism in degenerating nerves.
Neither the extracellular space nor the concentration of free amino acids were significantly different in nerves obtained from control and diabetic rats, except for lower glutamine content in the latter.
In vitro leucine metabolism of nerves is affected by diabetes, insulin and the integrity of the axon. The Schwann cell is suggested as a possible site of the observed changes in leucine metabolism.  相似文献   

11.
12.
Rats were given a portocaval anastomosis and 3 weeks later, when the only ultrastructural change in the CNS is watery swelling of astrocytes, several aspects of brain metabolism were studied. The uptake of leucine by the brain, its incorporation into protein and its oxidation were followed after the simultaneous injection of a mixture of L-[114C]leucine and L-[4,5-3H]leucine. The concentration of leucine in blood was lowered in the operated animals whereas in brain it was increased. The specific radioactivity of leucine in the brain was comparable to values in control animals and there was no evidence of a decrease in incorporation of [1-14C]leucine into brain proteins over the short experimental time period studied. The only difference from the controls in the oxidation of [4,5-3H]leucine was a greater accumulation in glutamine. The amount of glutamine in the brains of the operated animals had increased 4-fold at the time of the metabolic studies. From dual-labelled experiments in which a mixture containing [1-14C]butyrate and L-[4,5-3H]leucine was injected intravenously, it was shown that, in both control and operated animals, the pools of brain glutamate and glutamine labelled from butyrate were metabolically distinct from those labelled from leucine. The total radioactivity appearing in brain from [1-14C]butyrate was markedly reduced in operated animals, but the radioactivity from L-[4,5-3H]leucine was not. The metabolism of [1-14C]octanoate was compared with that of [1-14C]butyrate. In control animals the labelling of metabolites was almost identical with either precursor. In operated animals there was no reduction in the uptake of [1-14C]octanoate into the brain. There was evidence that the size of the glutamine pool labelled, relative to glutamate, was increased but that it had a slower fractional turnover coefficient. A link between astroglial changes and an impairment to the carrier mechanism for transport of short chain monocarboxylic acids across the blood-brain barrier is suggested.  相似文献   

13.
—It is generally believed that leucine serves primarily as a precursor for protein synthesis in the central nervous system. However, leucine is also oxidized to CO2 in brain. The present investigation compares leucine oxidation and incorporation into protein in brain slices and synaptosomes. In brain slices from adult rats, these processes were linear for 90min and 14CO2 production from 0·1 mm -l -[l-14C]leucine was 23 times more rapid than incorporation into protein. The rate of oxidation increased further with greater leucine concentrations. Experiments with l -[U-14C]leucine suggested that all of the carbons from leucine were oxidized to CO2 with very little incorporation into lipid. Oxidation of leucine also occurred in synaptosomes. In slices, leucine oxidation and incorporation into protein were inhibited by removal of glucose or Na+, or addition of ouabain. In synaptosomes, replacement of Na+ by choline also reduced leucine oxidation; and this effect did not appear to be due to inhibition of leucine transport. The rate of leucine oxidation did not change in brain slices prepared from fasted animals. Fasting, however, reduced the incorporation of leucine into protein in brain slices prepared from young but not from adult rats. These findings indicate that oxidation is the major metabolic fate of leucine in brain of fed and fasted animals.  相似文献   

14.
In the land snail H. aspersathe enzyme LAP has two loci, LAP-1and LAP-2, both of which arc monomeric enzymes under the controlof multiple alleles, the alleles being codominant. None of theobserved ratios in the pheno types in the experimental progenywere significantly different from Mendelian expectation. * Present Address: Bournside School, Cheltenham, Glos. (Received 1 September 1981;  相似文献   

15.
16.
Abstract— Incorporation of dl -[1-14C]leucine into proteins of the cerebral cortex of the rat was measured during spreading cortical depression (CSD) evoked by a single topical application of 25% (w/v) KCI. Maximal inhibition (42 per cent) of the rate of incorporation occurred 1 hr after application of KCI. Spreading depression of 2–3 hr duration was associated with 22 per cent and 13 per cent decreases, respectively, of incorporation of labelled leucine. Specific activity of the free pool leucine was not decreased during CSD but appeared to be higher than controls at 20 min after initiation of CSD. The specific activity of the total free pool amino acids was also increased at 10, 20, 60 and 120 min after application of KCI.
The inhibitory effect of CSD on incorporation of leucine into proteins was uniformly distributed among the crude mitochondrial, microsomal and soluble subcellular fractions from brains of adult animals, while in fractions from 25-day old animals there appeared to be relatively more inhibition in the crude mitochondrial fraction.  相似文献   

17.
Abstract— Protein synthesis in the retina of the honey-bee drone was studied by incubating head slices in labelled leucine and measuring the TCA insoluble radioactivity. It was found that the protein-bound radioactivity in illuminated retinas was half of that in dark-adapted ones. This ratio was not affected by pre-treatment with puromycin. It was therefore concluded that, in the drone, the main influence of illumination is to increase the rate of breakdown of proteins.
Relatively high concentrations of labelled protein were found in dark-adapted retinas when the retinula cells were hyperpolarized by bathing the preparation in a sodiumfree medium; low concentrations were found when retinula cells were depolarized by increasing the extracellular potassium concentration. These findings suggest that protein metabolism of the retina is influenced by the membrane potential of retinula cells.  相似文献   

18.
本文观测了Acetyl-DL-leucine(AL、一种抗眩晕药)对猫单侧前庭神经切断后前庭代偿的影响。结果显示:AL加快术后猫在转动横梁测试中运动平衡能力的恢复,但抑制去传入前庭外侧核神经元(n=506)静息自发放电频率的恢复。AL促进放电活动与头部左右摆动体位相关的神经元数量和比例的恢复,从术后的第1周的10%(n=454),逐渐提高到术后第3周的60%,第5周的75%  相似文献   

19.
中华绒螯蟹幼蟹对亮氨酸和异亮氨酸的需要量   总被引:2,自引:0,他引:2  
以初始体重为(0.900.02) g的中华绒螯蟹幼蟹为试验对象, 采用酪蛋白、明胶、进口鱼粉和晶体氨基酸为蛋白源, 配制成12组试验饲料, 研究中华绒螯蟹幼蟹对亮氨酸(Leu)和异亮氨酸(Ile)的需要量。饲料中Leu水平为0.87%、1.26%、1.64%、2.03%、2.39%和2.81% (分别记为Leu-1Leu-6组), Ile水平为0.69%、1.21%、1.70%、2.19%、2.70%和3.21% (分别记为Ile-1Ile-6组)。试验周期为60d。结果表明: (1)饲料中Leu含量为2.39%时, 幼蟹特定生长率和全蟹粗蛋白含量达到最大值, 而各组之间的成活率和全蟹水分、粗脂肪以及灰分无显著差异(P 0.05)。当饲料Leu含量大于2.39%时, 河蟹肌肉Leu含量、肌肉必需氨基酸总量和肌肉氨基酸总量均显著高于其他各试验组(P 0.05)。(2)饲料中Ile含量为2.19%时, 幼蟹特定生长率和全蟹粗蛋白含量达到最大值, 而各试验组之间的成活率和全蟹水分、粗脂肪以及灰分差异不显著(P 0.05)。河蟹肌肉Ile含量、必需氨基酸总量和氨基酸总量随饲料中Ile含量增加呈先升高后降低的趋势, 最大值均出现在Ile-5组(2.70% Ile), 但Ile-4组(2.19% Ile)与Ile-5组差异不显著(P 0.05)。根据特定生长率与饲料Leu或Ile水平的折线模型, 确定中华绒螯蟹幼蟹饲料亮氨酸和异亮氨酸的适宜需要量分别为饲料干物质的2.36%和2.25%, 即饲料蛋白的5.88%和5.72%。    相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号