首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
【目的】氮污染已成为当今水体污染的一个重要因素,为了解滇池可培养好氧反硝化细菌的多样性,获得高效好氧反硝化细菌资源,为污染水体或浅层地下水的生物修复提供材料。【方法】采用富集培养方法从滇池沉积物和水体样品中分离好氧反硝化细菌,对好氧反硝化细菌的16S r RNA基因序列进行系统发育分析,并筛选其中的高效好氧反硝化细菌。【结果】分离出260株好氧反硝化菌,经16S rRNA基因序列分析,260株菌分属于2门13科14属的59个种。假单胞菌属(Pseudomonas)为优势细菌属,其次是不动杆菌属(Acinetobacter)、气单胞菌属(Aeromonas)和代尔夫特菌属(Delftia)。筛选到12株高效好氧反硝化细菌菌株,其中8株属于假单胞菌(Pseudomonas spp.),4株为不动杆菌(Acinetobacter spp.)。定量分析发现菌株N15-6-1的反硝化效果较好。对菌株N15-6-1的脱氮条件优化结果显示,在以蔗糖为碳源,温度为30–35℃、C/N=12、静止培养时,反硝化能力较强,其在48 h内硝态氮的去除率达到98.81%,总氮的去除率达96.27%。【结论】滇池存在着较丰富的可培养好氧反硝化细菌,好氧反硝化细菌的分离丰富了好氧反硝化菌的种类,其中的高效脱氮菌株为污染水体或浅层地下水的生物修复提供了初步的候选菌株。  相似文献   

2.
一株耐氧反硝化细菌的筛选及脱氮特性研究   总被引:19,自引:0,他引:19  
从鱼塘中分离到1株高效的有氧反硝化菌,经初步鉴定,为芽孢杆菌。在溶解氧(OD)达到2mg/L时,除氮率达97%,OD达到4~5mg/L,仍有一定的反硝化作用,除氮率为85%以上。与典型的好氧反硝化菌Pseudomonasstutzeri[1]相比,有更强的耐溶解氧的优势。同时初步探讨了水体中不同溶解氧、碳源、pH、温度对该芽孢杆菌W2菌株反硝化作用的影响,水体中存在一定量有机碳源有利于反硝化,当以葡萄糖为碳源,pH为7.0~7.5,温度为32℃时,W2菌株具有最佳的降解人工废水反硝化能力。实验结果表明,在好氧条件下,菌体浓度为1000个/mL时,对自然水体中高达1mg/L亚硝酸浓度也能发挥高效的反硝化作用。  相似文献   

3.
杨丽  何腾霞  张漫漫  杨露 《微生物学报》2022,62(12):4781-4797
好氧反硝化作用的发现打破了反硝化只能在严格厌氧条件下进行的传统认知,为生物脱氮提供了一条新的途径,已成为近些年的研究热点。碳源可为好氧反硝化过程提供能量和电子供体,其代谢难易程度直接影响着好氧反硝化细菌的脱氮效率,因此有必要明确碳源在好氧反硝化脱氮过程中的代谢机理。基于此,本文阐述了好氧反硝化细菌的种类及其对硝态氮与亚硝态氮的代谢途径;系统分析了不同好氧反硝化细菌对碳氮源代谢的差异与代谢机理;综合分析了碳代谢差异对好氧反硝化脱氮过程的影响,并对未来的研究方向进行了展望,旨在深入理解好氧反硝化细菌同时去除碳氮的机理,为提高废水生物脱氮除碳效率提供理论依据。  相似文献   

4.
【背景】深海海域具有高压、低温、无光等环境条件,蕴含着丰富而独特的微生物资源。【目的】从深海沉积物中定向分离、筛选脱氮效率高的好氧脱氮菌株资源,并揭示其脱氮特性,为开发水体脱氮微生物技术提供物质基础。【方法】以东太平洋、南大西洋、西南印度洋共10个站位的深海沉积物为研究材料,在28°C下使用无机氮源连续进行两轮富集培养,然后定性筛选可以脱除氨氮、亚硝态氮和硝态氮的菌株,并通过形态学和16S rRNA基因序列分析进行初步分类鉴定;对优选得到的功能菌株,分别采用以氨氮、亚硝态氮、硝态氮为唯一氮源的培养基定量研究其生长和脱氮性能。【结果】从10份大洋深海沉积物样品中共分离得到49株好氧反硝化菌,其中3株在有氧条件下反硝化效率较高,分别命名为Pseudomonassp.G111、Pseudomonassp.G112和Dietziamaris W023a,其中菌株G111和G112与模式菌株博岑假单胞菌Pseudomonas bauzanensis BZ93T的16S rRNA基因序列相似度为99.2%,菌株W023a与模式菌株海洋迪茨氏菌DietziamarisATCC35013T的16SrRNA基因序列相似度为99.9%。菌株G111、G112和W023a培养48h后,对氨氮的脱除率分别为98.0%、85.2%和97.6%;对亚硝态氮的脱除率分别为71.9%、67.5%和34.7%;对硝态氮的脱除率分别为66.0%、52.6%和56.3%。菌株G111、G112和W023a均为异养硝化-好氧反硝化菌,可通过好氧反硝化作用将亚硝态氮和硝态氮还原为含氮气体,也可通过异养硝化-好氧反硝化作用将氨氮转化为含氮气体。【结论】从深海沉积物中分离筛选得到3株高效好氧反硝化菌,所获得的菌株在水体净化、污水处理、生态系统修复等领域具有应用潜力。  相似文献   

5.
何腾霞  徐义  李振轮 《微生物学报》2015,55(8):991-1000
摘要:【目的】反硝化细菌在生物脱氮中具有重要作用,而耐冷亚硝酸盐型反硝化细菌研究较少,本文从长期淹水的冬水田泥土分离获得一株耐冷高效去除亚硝酸盐氮和总氮的好氧反硝化细菌Y-11,明确其分类地位以及除氮特性,以期为后续利用该菌在初冬到春末处理亚硝酸盐水体污染奠定基础。【方法】通过形态学特征、特异性磷脂脂肪酸以及16S rRNA基因测序分析对该菌株进行鉴定;在好氧条件下以亚硝酸钠为唯一氮源,分别研究不同初始温度、转速、pH、碳源、接种量以及亚硝酸盐氮浓度对该菌去除亚硝酸盐氮和总氮的影响,确定最适降解条件。【结果】分离得到的菌株Y-11,经鉴定归于托拉斯假单胞菌(Pseudomonas tolaasii);在国内外尚无该种菌具有反硝化作用的报道,是对亚硝酸盐型反硝化细菌的进一步补充。Y-11菌株的最适脱氮条件为15 ℃,200 r/min,pH7.0,100 mL反硝化培养基中最适接种量为1.5×108 CFU,最佳碳源为乙酸 钠,亚硝酸盐氮为10 mg/L;以乙酸钠为电子供体,15 ℃、初始pH为7.2、150 r/min 振荡培养,48 h对亚硝酸盐氮和总氮的去除率分别为100%和61.28%。【结论】Y-11是一株具有较高反硝化能力的托拉斯假单胞菌,能高效地去除亚硝酸盐氮和总氮,其最适温度是15 ℃左右,是一株耐冷反硝化细菌。  相似文献   

6.
养虾池好氧反硝化细菌新菌株的分离鉴定及特征   总被引:14,自引:0,他引:14  
利用间歇曝气选择性富集并对所获菌株的好氧反硝化活性进行检测。筛选到一株亚硝酸盐去除活性较高的好氧反硝化细菌。在溶解氧(D0)为3.80-5.21mg/L的培养条件下。该菌株10h内将亚硝态氮由26.18mg/L降至0;在盐度为0—25之间20h内均可达到同样的去除效果。通过形态学特征、生理生化反应及部分长度16SrDNA序列分析对筛选菌株进行鉴定,初步判定它为嗜麦芽寡养单胞菌Stertotrophomonas maltophilia。亚硝酸盐还原酶基因分析结果表明。该菌株只含亚硝酸盐还原酶nitS基因,其序列与Alcaligenes faecalis A15(后来被重新鉴定为Pseudomonas stutzeri)的nirS基因序列相似。  相似文献   

7.
旨在对获得的具有耐冷高效去除亚硝酸盐氮和总氮的好氧反硝化细菌进行分类地位及除氮特性研究。结合形态学观察、特异性磷脂脂肪酸检测和16S r RNA基因序列分析,对实验室新分离获得的Y-9菌株进行鉴定,在此基础上,研究了温度、转速、p H、接种量、碳源和亚硝酸盐氮浓度等不同条件对该菌脱氮能力的影响。结果显示,菌株Y-9属于恶臭假单胞菌(Pseudomonas putida),还原亚硝酸盐氮的最适温度为15℃,最佳溶解氧水平对应转速为100 r/min,在该溶解氧水平下15℃、48 h内对亚硝酸盐氮和总氮的去除率高达100%和77.13%,最佳p H为7,100 m L反硝化培养基中最适接种量为1 m L OD600为0.5的菌悬液,碳源为柠檬酸钠,适合治理低浓度的亚硝酸盐氮污染水体,但对高浓度的亚硝酸盐氮具有一定耐受性。Y-9为一株耐冷反硝化细菌,在亚硝酸盐污染的养殖水体,尤其是冷水鱼类养殖水体中具有较大的应用潜力。  相似文献   

8.
沈桐  江进  李宁  罗晓楠 《微生物学报》2023,63(2):465-482
相比于氨氮,天然水体中的硝酸盐氮通常更稳定,导致更难将其从水中去除。由于好氧反硝化可以在有氧环境下进行反硝化作用去除硝酸盐氮,该过程对含有较高溶解氧的天然水体中硝酸盐氮处理有重要作用。本文综述了好氧反硝化菌的分离纯化现状、微生物代谢机制和环境影响因子,并介绍了功能菌群在微污染饮用水源水生物修复的应用研究进展。与一般的厌氧反硝化类似,好氧反硝化菌的种属分布较广,常见的如假单胞菌属(Pseudomoas)、产碱杆菌属(Alcaligenes)、副球菌属(Paracoccus)和芽孢杆菌属(Bacillus)等所属部分微生物均有好氧反硝化能力。大部分好氧反硝化菌株在最佳生长条件下(25–37℃、溶解氧浓度为3–5mg/L、pH为7–8、碳氮比为5–10)具有高效的脱氮效率。但目前好氧反硝化作用在微污染饮用水源水的生物修复方面的应用仍有着脱氮性能不稳定、菌剂流失等不足。此外,目前较少相关中试及实际工程应用的研究,需要进一步的深入探究。  相似文献   

9.
基于响应面法对一株好氧反硝化菌脱氮效能优化   总被引:2,自引:1,他引:1  
【目的】水体富营养化是当今我国水环境面临的重大水域环境问题,氮素超标排放是主要的引发因素之一。好氧反硝化菌构建同步硝化反硝化工艺比传统脱氮工艺优势更大。获得高效的好氧反硝化菌株并通过生长因子优化使脱氮效率达到最高。【方法】经过序批式生物反应器(Sequencing batch reactor,SBR)的定向驯化,筛选获得高效好氧反硝化菌株,采用响应面法优化好氧反硝化过程影响总氮去除效率的关键因子(碳氮、溶解氧、pH、温度)。【结果】从运行稳定的SBR反应器中定向筛选高效好氧反硝化菌株Pseudomonas T13,采用响应面法对碳氮比、pH和溶解氧关键因子综合优化获得在18 h内最高硝酸盐去除率95%,总氮去除率90%。该菌株的高效反硝化效果的适宜温度范围为25?30 °C;最适pH为中性偏碱;适宜的COD/NO3?-N为4:1以上;最佳溶解氧浓度在2.5 mg/L。【结论】从长期稳定运行的SBR反应器中筛选获得一株高效好氧反硝化菌Pseudomonas T13,硝酸盐还原酶比例占脱氮酶基因的30%以上,通过运行条件优化获得硝氮去除率达到90%以上,对强化废水脱氮工艺具有良好应用价值。  相似文献   

10.
耐盐好氧反硝化菌A-13菌株的分离鉴定及其反硝化特性   总被引:6,自引:0,他引:6  
[目的]筛选高效好氧脱氮的反硝化细菌,对菌株进行多项鉴定及条件优化,为后续富营养化人工湖水体治理提供理论依据.[方法]利用反硝化培养基分离筛选好氧反硝化细菌,通过形态、生理生化、16S rRNA基因序列分析、周质硝酸还原酶亚基基因( napA)同源性分析进行菌株鉴定;通过反硝化培养基,对菌株生长及反硝化的最适pH、温度、碳源、溶解氧、接种量等进行了考察.[结果]从福州市闽侯县上街镇高岐村某排污口分离出1株耐盐高效好氧反硝化细菌A-13,多项鉴定表明该菌株为Pseudomonas stutzeri,与Pseudomonas stutzeri DSM 50283亲缘关系最近.菌株生长及反硝化的最适pH为6.5,最适温度为33℃,最适碳源为丁二酸钠,最适摇床转速为150 r/min,最适接种量为5%.在此条件下,最大可去除NO3-浓度约为1900 mg/L.该菌能够在高盐培养基( 10% NaCl)中良好生长.对人工废水的净化效果表明,该菌具有一定的工程应用价值.[结论]分离所得好氧反硝化细菌为Pseudomonas stutzeri,将其命名为P.stutzeri YHA-13.具备高耐盐性的好氧反硝化功能的P.stutzeri未见报道.这对含盐废水/富营养化水体的工程应用有一定的潜在价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号