首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Gram-negative bacterium Campylobacter jejuni encodes an extensively characterized N-linked protein glycosylation system that modifies many surface proteins with a heptasaccharide glycan. In C. jejuni, the genes that encode the enzymes required for glycan biosynthesis and transfer to protein are located at a single pgl gene locus. Similar loci are also present in the genome sequences of all other Campylobacter species, although variations in gene content and organization are evident. In this study, we have demonstrated that only Campylobacter species closely related to C. jejuni produce glycoproteins that interact with both a C. jejuni N-linked-glycan-specific antiserum and a lectin known to bind to the C. jejuni N-linked glycan. In order to further investigate the structure of Campylobacter N-linked glycans, we employed an in vitro peptide glycosylation assay combined with mass spectrometry to demonstrate that Campylobacter species produce a range of structurally distinct N-linked glycans with variations in the number of sugar residues (penta-, hexa-, and heptasaccharides), the presence of branching sugars, and monosaccharide content. These data considerably expand our knowledge of bacterial N-linked glycan structure and provide a framework for investigating the role of glycosyltransferases and sugar biosynthesis enzymes in glycoprotein biosynthesis with practical implications for synthetic biology and glycoengineering.  相似文献   

2.
The bifunctional methylerythritol 4-phosphate cytidylyltransferase methylerythritol 2,4-cyclodiphosphate synthase (IspDF) is unusual in that it catalyzes nonconsecutive reactions in the 1-deoxy-D-xylulose 5-phosphate (DOXP) pathway of isoprenoid precursor biosynthesis. The crystal structure of IspDF from the bacterial pathogen Campylobacter jejuni reveals an elongated hexamer with D3 symmetry compatible with the dimeric 2C-methyl-D-erythritol-4-phosphate cytidylyltransferase and trimeric 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase monofunctional enzymes. Complex formation of IspDF with 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE), the intervening enzyme activity in the pathway, has been observed in solution for the enzymes from C. jejuni and Agrobacterium tumefaciens. The monofunctional enzymes (2C-methyl-D-erythritol-4-phosphate cytidylyltransferase, IspE, and 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase) involved in the DOXP biosynthetic pathway of Escherichia coli also show physical associations. We propose that complex formation of the three enzymes at the core of the DOXP pathway can produce an assembly localizing 18 catalytic centers for the early stages of isoprenoid biosynthesis.  相似文献   

3.
The epsilon-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR operons from the two pathogenic bacteria H. pylori and C. jejuni and their expression in Wolinella succinogenes, a non-pathogenic -proteobacterium. To our knowledge, this is the first documentation of heterologous membrane protein production in W. succinogenes. We demonstrate that the replacement of the homologous enzyme from W. succinogenes with the heterologous enzymes yields mutants where fumarate respiration is fully functional. We have isolated and characterized the heterologous QFR enzymes. The high quality of the enzyme preparation enabled us to determine unequivocally by analytical ultracentrifugation the homodimeric state of the three detergent-solubilized heterotrimeric QFR enzymes, to accurately determine the different oxidation-reduction ('redox') midpoint potentials of the six prosthetic groups, the Michaelis constants for the quinol substrate, maximal enzymatic activities and the characterization of three different anti-helminths previously suggested to be inhibitors of the QFR enzymes from H. pylori and C. jejuni. This characterization allows, for the first time, a detailed comparison of the QFR enzymes from C. jejuni and H. pylori with that of W. succinogenes.  相似文献   

4.
The enzymes 6-hydroxymethylpterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS) catalyze sequential steps in folate biosynthesis. They are present in microorganisms but absent in mammals and therefore are especially suitable targets for antimicrobials. Sulfa drugs (sulfonamides and sulfones) currently are used as antimicrobials targeting DHPS, although resistance to these drugs is increasing. The most widely used assay that measures activity of these enzymes, to assess new inhibitors in vitro, is not amenable to automation. This article describes a simple, coupled, enzymatic spectrophotometric assay where the product of the DHPS reaction, dihydropteroate, is reduced to tetrahydropteroate by excess dihydrofolate reductase (DHFR) using the cofactor NADPH. The oxidation of NADPH is monitored at 340 nm. The activity of both HPPK and DHPS can be measured in this assay, and it has been used to measure kinetic parameters of wild-type and sulfa drug-resistant DHPS enzymes to demonstrate the utility of the assay. It is a sensitive and reproducible assay that can be readily automated and used in multiwell plates. This NADPH-coupled microplate photometric assay could be used for rapid screening of chemical libraries for novel inhibitors of folate biosynthesis as the first step in developing new antimicrobial drugs targeting the folate biosynthetic pathway.  相似文献   

5.
We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen, Campylobacter jejuni OH4384, which has been associated with Guillain-Barré syndrome. We first cloned a gene encoding an alpha-2, 3-sialyltransferase (cst-I) using an activity screening strategy. We then used nucleotide sequence information from the recently completed sequence from C. jejuni NCTC 11168 to amplify a region involved in LOS biosynthesis from C. jejuni OH4384. The LOS biosynthesis locus from C. jejuni OH4384 is 11.47 kilobase pairs and encodes 13 partial or complete open reading frames, while the corresponding locus in C. jejuni NCTC 11168 spans 13.49 kilobase pairs and contains 15 open reading frames, indicating a different organization between these two strains. Potential glycosyltransferase genes were cloned individually, expressed in Escherichia coli, and assayed using synthetic fluorescent oligosaccharides as acceptors. We identified genes encoding a beta-1, 4-N-acetylgalactosaminyl-transferase (cgtA), a beta-1, 3-galactosyltransferase (cgtB), and a bifunctional sialyltransferase (cst-II), which transfers sialic acid to O-3 of galactose and to O-8 of a sialic acid that is linked alpha-2,3- to a galactose. The linkage specificity of each identified glycosyltransferase was confirmed by NMR analysis at 600 MHz on nanomole amounts of model compounds synthesized in vitro. Using a gradient inverse broadband nano-NMR probe, sequence information could be obtained by detection of (3)J(C,H) correlations across the glycosidic bond. The role of cgtA and cst-II in the synthesis of the GT1a mimic in C. jejuni OH4384 were confirmed by comparing their sequence and activity with corresponding homologues in two related C. jejuni strains that express shorter ganglioside mimics in their LOS.  相似文献   

6.
Campylobacter jejuni produces glycoproteins that are essential for virulence. These glycoproteins carry diacetamidobacillosamine (DAB), a sugar that is not found in humans. Hence, the enzymes responsible for DAB synthesis represent potential therapeutic targets. We describe the biochemical characterization of Cj1121c, a putative aminotransferase encoded by the general protein glycosylation locus, to assess its role in DAB biosynthesis. By using overexpressed and affinity-purified enzyme, we demonstrate that Cj1121c has pyridoxal phosphate- and glutamate-dependent UDP-4-keto-6-deoxy-GlcNAc C-4 transaminase activity and produces UDP-4-amino-4,6-dideoxy-GlcNAc. This is consistent with a role in DAB biosynthesis and distinguishes Cj1121c from Cj1294, a homologous UDP-2-acetamido-2,6-dideoxy-beta-l-arabino-4-hexulose C-4 aminotransferase that we characterized previously. We show that Cj1121c can also use this 4-keto-arabino sugar indirectly as a substrate, that Cj1121c and Cj1294 are active simultaneously in C. jejuni, and that the activity of Cj1121c is preponderant under standard growth conditions. Kinetic data indicate that Cj1121c has a slightly higher catalytic efficiency than Cj1294 with regard to the 4-keto-arabino substrate. By site-directed mutagenesis, we show that residues Glu-158 and Leu-131 are not essential for catalysis or for substrate specificity contrary to expectations. We further demonstrate that a cj1121c knock-out mutant is impaired for flagella-mediated motility, for invasion of intestinal epithelial cells, and for persistence in the chicken intestine, clearly demonstrating that Cj1121c is essential for host colonization and virulence. Finally, we show that cj1121c is necessary for protein glycosylation by lectin Western blotting. Collectively, these results validate Cj1121c as a promising drug target and provide the means to assay for inhibitors.  相似文献   

7.
The availability of fully sequenced bacterial genomes has revealed that many species known to synthesize the polyamine spermidine lack the spermidine biosynthetic enzymes S-adenosylmethionine decarboxylase and spermidine synthase. We found that such species possess orthologues of the sym-norspermidine biosynthetic enzymes carboxynorspermidine dehydrogenase and carboxynorspermidine decarboxylase. By deleting these genes in the food-borne pathogen Campylobacter jejuni, we found that the carboxynorspermidine decarboxylase orthologue is responsible for synthesizing spermidine and not sym-norspermidine in vivo. In polyamine auxotrophic gene deletion strains of C. jejuni, growth is highly compromised but can be restored by exogenous sym-homospermidine and to a lesser extent by sym-norspermidine. The alternative spermidine biosynthetic pathway is present in many bacterial phyla and is the dominant spermidine route in the human gut, stomach, and oral microbiomes, and it appears to have supplanted the S-adenosylmethionine decarboxylase/spermidine synthase pathway in the gut microbiota. Approximately half of the gut Firmicutes species appear to be polyamine auxotrophs, but all encode the potABCD spermidine/putrescine transporter. Orthologues encoding carboxyspermidine dehydrogenase and carboxyspermidine decarboxylase are found clustered with an array of diverse putrescine biosynthetic genes in different bacterial genomes, consistent with a role in spermidine, rather than sym-norspermidine biosynthesis. Due to the pervasiveness of ε-proteobacteria in deep sea hydrothermal vents and to the ubiquity of the alternative spermidine biosynthetic pathway in that phylum, the carboxyspermidine route is also dominant in deep sea hydrothermal vents. The carboxyspermidine pathway for polyamine biosynthesis is found in diverse human pathogens, and this alternative spermidine biosynthetic route presents an attractive target for developing novel antimicrobial compounds.  相似文献   

8.
Campylobacter jejuni produces multiple glycoproteins whose glycans contain 4-amino 6-deoxy sugars or their derivatives, such as diacetamidobacillosamine or pseudaminic acid. Because the proteoglycans contribute to bacterial virulence and their constitutive sugars are not commonly found in humans, inhibitors developed against the enzymes that are responsible for their biosynthesis could be novel therapeutic targets to fight this important food-borne pathogen. The biosynthesis of diacetamidobacillosamine is anticipated to involve a sugar nucleotide C6 dehydratase, a C4 aminotransferase and an acetyltransferase. We have identified a set of genes (cj1293, cj1294, and cj1298) potentially encoding one of each enzymatic activity, and demonstrated earlier that Cj1293 was a UDP-GlcNAc-specific C6 dehydratase. Others have shown that Cj1293 was involved in protein glycosylation. Here, we report on our investigation of the potential activity of Cj1294 as a sugar nucleotide C4 aminotransferase. Our biochemical characterization of overexpressed and purified protein shows that Cj1294 is a pyridoxal phosphate-dependent aminotransferase specific for UDP-4-keto-6-deoxy-GlcNAc that uses preferentially glutamic acid as an amino donor. A detailed physicokinetic study of Cj1294 was performed to determine the K(m) of 1.28 +/- 0.2 mm and k(cat) of 11.5 +/- 1.3 min(-1). Also, two residues essential for protein stability and activity, Arg(228) and Lys(181), respectively, were identified by site-directed mutagenesis. Finally, we demonstrated by NMR analysis of purified reaction product that Cj1294 produces UDP-4-amino-4,6-dideoxy-GalNAc. These results indicate that Cj1294 is involved in the biosynthesis of diacetamidofucosamine, a C4 epimer of diacetamidobacillosamine not yet described in C. jejuni proteoglycans, suggesting that the composition of C. jejuni proteoglycans is more variable than anticipated.  相似文献   

9.
Campylobacter jejuni infections are one of the leading causes of human gastroenteritis and are suspected of being a precursor to Guillain-Barré and Miller-Fisher syndromes. Recently, the complete genome sequence of C. jejuni NCTC 11168 was described. In this study, the molecular structure of the lipooligosaccharide and capsular polysaccharide of C. jejuni NCTC 11168 was investigated. The lipooligosaccharide was shown to exhibit carbohydrate structures analogous to the GM1a and GM2 carbohydrate epitopes of human gangliosides (shown below): The high Mr capsule polysaccharide was composed of beta-d-Ribp, beta-d-GalfNAc, alpha-d-GlcpA6(NGro), a uronic acid amidated with 2-amino-2-deoxyglycerol at C-6, and 6-O-methyl-d-glycero-alpha-l-gluco-heptopyranose as a side-branch (shown below): The structural information presented here will aid in the identification and characterization of specific enzymes that are involved in the biosynthesis of these structures and may lead to the discovery of potential therapeutic targets. In addition, the correlation of carbohydrate structure with gene complement will aid in the elucidation of the role of these surface carbohydrates in C. jejuni pathogenesis.  相似文献   

10.
The respiratory chain enzymes of microaerophilic bacteria should play a major role in their adaptation to growth at low oxygen tensions. The genes encoding the putative NADH:quinone reductases (NDH-1), the ubiquinol:cytochrome c oxidoreductases (bc1 complex) and the terminal oxidases of the microaerophiles Campylobacter jejuni and Helicobacter pylori were analysed to identify structural elements that may be required for their unique energy metabolism. The gene clusters encoding NDH-1 in both C. jejuni and H. pylori lacked nuoE and nuoF, and in their place were genes encoding two unknown proteins. The NuoG subunit in these microaerophilic bacteria appeared to have an additional Fe-S cluster that is not present in NDH-1 from other organisms; but C. jejuni and H. pylori differed from each other in a cysteine-rich segment in this subunit, which is present in some but not all NDH-1. Both organisms lacked genes orthologous to those encoding NDH-2. The subunits of the bc1 complex of both bacteria were similar, and the Rieske Fe-S and cytochrome b subunits had significant similarity to those of Paracoccus denitrificans and Rhodobacter capsulatus, well-studied bacterial bc1 complexes. The composition of the terminal oxidases of C. jejuni and H. pylori was different; both bacteria had cytochrome cbb3 oxidases, but C. jejuni also contained a bd-type quinol oxidase. The primary structures of the major subunits of the cbb3-type (terminal) oxidase of C. jejuni and H. pylori indicated that they form a separate group within the cbb3 protein family. The implications of the results for the function of the enzymes and their adaptation to microaerophilic growth are discussed.  相似文献   

11.
Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we demonstrate that a routinely used assay for screening PNMT inhibitors is not appropriate for those inhibitors having K(i) values less than 1 microM. A revised assay has been developed that shows some inhibitors bind two orders of magnitude more tightly than previously reported.  相似文献   

12.
Leishmania spp. are a medically important group of protozoan parasites that synthesize a novel intracellular carbohydrate reserve polymer termed mannogen. Mannogen is a soluble homopolymer of β-1,2-linked mannose residues that accumulates in the major pathogenic stages in the sandfly vector and mammalian host. While several steps in mannogen biosynthesis have been defined, none of the enzymes have been isolated or characterized. We report the development of a simple assay for the GDP-mannose-dependent β-1,2-mannosyltransferases involved in mannogen synthesis. This assay utilizes octyl α-D-mannopyranoside to prime the formation of short mannogen oligomers up to 5 mannose residues. This assay was used to screen a focussed library of 44 GMP-triazole adducts for inhibitors. Several compounds provided effective inhibition of mannogen β-1,2-mannosyltransferases in a cell-free membrane preparation. This assay and inhibitor compounds will be useful for dissecting the role of different mannosyltransferases in regulating de novo biosynthesis and elongation reactions in mannogen metabolism.  相似文献   

13.
Homocitrate synthase (HCS) catalyzes the first step of l-lysine biosynthesis in fungi by condensing acetyl-coenzyme A and 2-oxoglutarate to form 3R-homocitrate and coenzyme A. Due to its conservation in pathogenic fungi, HCS has been proposed as a candidate for antifungal drug design. Here we report the development and validation of a robust fluorescent assay for HCS that is amenable to high-throughput screening for inhibitors in vitro. Using this assay, Schizosaccharomyces pombe HCS was screened against a diverse library of approximately 41,000 small molecules. Following confirmation, counter screens, and dose–response analysis, we prioritized more than 100 compounds for further in vitro and in vivo analysis. This assay can be readily adapted to screen for small molecule modulators of other acyl-CoA-dependent acyltransferases or enzymes that generate a product with a free sulfhydryl group, including histone acetyltransferases, aminoglycoside N-acetyltransferases, thioesterases, and enzymes involved in lipid metabolism.  相似文献   

14.
15.
Giera M  Renard D  Plössl F  Bracher F 《Steroids》2008,73(3):299-308
Inhibition of cholesterol biosynthesis offers the opportunity for treatment of cardiovascular diseases. Numerous enzymes are involved in the post-squalene part of this biosynthesis, and selective inhibitors for almost all of the enzymes involved there have been described in literature. The only exception is the enzyme lathosterol oxidase (EC 1.14.21.6), for which up to now no selective inhibitor has been found. Up to date only triarimol has been reported as a weak inhibitor. In this paper we report on lathosterol side chain amides as a new class of selective lathosterol oxidase inhibitors. To study the influence of different sterol amides on inhibition of this enzyme, numerous compounds were prepared and the sterol patterns resulting from incubation of HL 60 cells with these enzyme inhibitors were monitored in a whole cell screening assay by means of GC/MS analysis. Small alkyl residues at the amide nitrogen (hydrogen and methyl) lead to an inhibition of the enzyme Delta24-reductase, the N-ethyl and N-propyl derivatives show a dual action, inhibiting both Delta24-reductase and lathosterol oxidase. Lathosterol-derived amides with larger substituents (butyl, isobutyl, tert-butyl, pentyl) at the amide nitrogen were found to be selective inhibitors of lathosterol oxidase. The corresponding 3beta-acetoxy derivatives showed comparable activities and can be considered as prodrugs, since they are transformed into the 3beta-hydroxy derivatives under the test conditions, as proven by HPLC analysis.  相似文献   

16.
The properties of spinach leaf sucrose-phosphate synthetase (EC 2.4.1.14) and cytosolic fructose-1,6-bisphosphatase (EC 3.1.3.11) have been studied. These two enzymes have been considered to be important in the control of sucrose synthesis. Sucrose-phosphate synthetase from leaf tissue has not been studied in detail previously and we report a technique for purifying this enzyme 50-fold by chromatography on AH-Sepharose 4B. This method frees the enzyme from contaminants which interfere with assay procedures with little or no loss of activity. The partially purified enzyme has a Km for UDP-glucose of 7.1 mm and for fructose 6-phosphate of 0.8 mm. Fructose 1,6-bisphosphate, inorganic phosphate and UDP are strong inhibitors. The inhibition patterns of these suggest that the enzyme operates either by an ordered bi-bi or a Theorell-Chance mechanism. Partially purified cytosolic fructose-1,6-bisphosphatase is not only inhibited by AMP as previously reported, but is also inhibited by fructose 6-phosphate and UDP. From our observations, we conclude that sucrose biosynthesis is indeed controlled through these two enzymes and it appears that the rate of sucrose synthesis is largely dependent upon the supply of triose phosphate and ATP from the chloroplast.  相似文献   

17.
The lack of novel antimicrobial drugs under development coupled with the increasing occurrence of resistance to existing antibiotics by community and hospital acquired infections is of grave concern. The targeting of biosynthesis of the peptidoglycan component of the bacterial cell wall has proven to be clinically valuable but relatively little therapeutic development has been directed towards the transglycosylase step of this process. Advances towards the isolation of new antimicrobials that target transglycosylase activity will rely on the development of the enzymological tools required to identify and characterise novel inhibitors of these enzymes. Therefore, in this article, we review the assay methods developed for transglycosylases and review recent novel chemical inhibitors discovered in relation to both the lipidic substrates and natural product inhibitors of the transglycosylase step.  相似文献   

18.
L-selectin, a leukocyte adhesion molecule, plays a central role in lymphocyte homing to secondary lymphoid tissue and to certain sites of inflammation. Carbohydrate sulfation was implicated in this process, when it was demonstrated that carbohydrate sulfotransferase-mediated sulfation of N-acetylglucosamine (GlcNAc) within sialyl Lewis X of cognate endothelial ligands for L-selectin was an essential modification for L-selectin binding. The recently identified GlcNAc-6-sulfotransferases GlcNAc6ST-1 and -2, which facilitate GlcNAc sulfation by catalyzing the transfer of a sulfonyl group from 3(')-phosphoadenosine 5(')-phosphosulfate (PAPS) to the 6-hydroxy group of the acceptor GlcNAc moiety, contribute to the biosynthesis of the 6-sulfosialyl Lewis X motif. Due to their pivotal role in L-selectin ligand biosynthesis, this enzyme class has recently emerged as an important and relatively unexplored class of potential targets for anti-inflammatory therapy. However, no inhibitors have been reported to date and screening for lead inhibitors has been hampered by the lack of simple assay formats suitable for high-throughput screening. Here, we report the development of a simple homogeneous in vitro sulfotransferase assay using a newly synthesized biotinylated glycoside as a substrate. The assay is based on GlcNAc6ST-2-mediated [35S]sulfate transfer from [35S]PAPS to the biotinylated glycoside and subsequent detection using streptavidin-coated SPA beads. K(m) values with partially purified GlcNAc6ST-2 for PAPS and the biotinylated glycoside were estimated to be 8.4 and 34.5 microM, respectively. The sulfotransferase reaction could be inhibited by 3('),5(')-ADP with an IC(50) of 2.1 microM. The assay can be operated in 384-well format; is characterized by a high signal-to-noise ratio, low variation, and excellent Z factors; and is highly suitable for high-throughput screening.  相似文献   

19.
Cytochrome P450 enzymes play an important role in steroid hormone biosynthesis of the human adrenal gland, e.g., the production of cortisol and aldosterone. Aldosterone, the most important human mineralocorticoid, is involved in the regulation of the salt and water homeostasis of the body and thus in the regulation of blood pressure, whereas cortisol is the most important glucocorticoid of the human body. CYP11B-dependent steroid hydroxylases are drug development targets, and since they are very closely related enzymes, the discovery of selective inhibitors has been subject to intense investigations for several years. Here we report the development of a whole-cell medium throughput screening technology for the discovery of CYP11B2 inhibitors. The new screening system displayed high reproducibility and was applied to investigate a library of pharmacologically active compounds. 1268 compounds were investigated during this study which revealed 5 selective inhibitors of CYP11B2 (after validation against CYP11B1). The new inhibitors of CYP11B2 are already existing drugs that could be used either in the treatment of hyperaldosteronism-related diseases or as lead compounds that could further be optimised to achieve safer and selective inhibitors of aldosterone synthase. Article from the Special issue on 'Targeted Inhibitors'.  相似文献   

20.
One of the biggest challenges for recent medical research is the continuous development of new antibiotics interacting with bacterial essential mechanisms. The machinery for peptidoglycan biosynthesis is a rich source of crucial targets for antibacterial chemotherapy. The cytoplasmic steps of the biosynthesis of peptidoglycan precursor, catalysed by a series of Mur enzymes, are excellent candidates for drug development. There has been growing interest in these bacterial enzymes over the last decade. Many studies attempted to understand the detailed mechanisms and structural features of the key enzymes MurA to MurF. Only MurA is inhibited by a known antibiotic, fosfomycin. Several attempts made to develop novel inhibitors of this pathway are discussed in this review. Three novel inhibitors of MurA were identified recently. 4-Thiazolidinone compounds were designed as MurB inhibitors. Many phosphinic acid derivatives and substrate analogues were identified as inhibitors of the MurC to MurF amino acid ligases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号