共查询到20条相似文献,搜索用时 46 毫秒
1.
The glycerol fed-batch fermentation by Klebsiella pneumoniae CGMCC 1.6366 exhibited the sequential synthesis of products, including acetate, 1,3-propanediol (1,3-PD), 2,3-butanediol, ethanol, succinate, and lactate. The dominant flux distribution was shifted from acetate formation to 1,3-PD formation in early- exponential growth phase and then to lactate synthesis in late-exponential growth phase. The underlying physiological mechanism of the above observations has been investigated via the related enzymes, nucleotide, and intermediary metabolites analysis. The carbon flow shift is dictated by the intrinsic physiological state and enzymatic activity regulation. Especially, the internal redox state could serve as a rate-controlling factor for 1,3-PD production. The q(1,3-PD) formation was the combined outcomes of regulations of glycerol dehydratase activity and internal redox balancing. The q(ethanol)/q(acetate) ratios demonstrated the flexible adaptation mechanism of K. pneumoniae preferring ATP generation in early-exponential growth phase. A low PEP to pyruvate ratio corresponded LDH activity increase, leading to lactate accumulation in stationary phase. 相似文献
2.
Ni-Ni Guo Zong-Ming Zheng Yu-Lin Mai Hong-Juan Liu De-Hua Liu 《Applied microbiology and biotechnology》2010,86(2):701-707
The filtration in 1,3-propanediol (1,3-PD) downstream process is influenced by the large amounts of capsular polysaccharides
(CPS) produced by Klebsiella pneumoniae CGMCC 1.6366. The morphological and fermentation properties were investigated with the CPS-deficient mutant K. pneumoniae CGMCC 1.6366 CPS. Similar biomass was obtained with CGMCC 1.6366, and the mutant strain in batch cultures indicating the
cell growth was slightly inhibited by CPS defection. The viscosity of fermentation broth by mutant strain decreased by 27.45%.
The flux with ceramic membrane filter was enhanced from 168.12 to 303.6 l h−1 m−2, exhibiting the great importance for downstream processing of 1,3-PD fermentation. The products spectrum of mutant isolate
changed remarkably regarding to the concentration of fermentation products. The synthesis of important 1,3-PD and 2,3-butanediol
was enhanced from 9.73 and 4.06 g l−1 to 10.37 and 4.77 g l−1 in batch cultures. The noncapsuled K. pneumoniae provided higher 1,3-PD yield of 0.54 mol mol−1 than that of encapsuled wild parent in batch cultures. The fed-batch fermentation of mutant strain resulted in 1,3-PD concentration,
yield, and productivity of 78.13 g l−1, 0.53 mol mol−1, and 1.95 g l−1 h−1, respectively. 相似文献
3.
Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae 总被引:5,自引:0,他引:5
Anaerobic fermentation was relatively difficult to optimize due to lack of monitoring parameters. In this paper, a new method
was reported using extracellular oxidoreduction potential (ORP) to monitor 1,3-propanediol (1,3-PD) biosynthesis process by
Klebsiella pneumoniae. In batch fermentation, cell growth, 1,3-propanediol production and by-products distribution were studied at four different
ORP levels: 10, −140, −190 and −240 mV. From the results, the ORP level of −190 mV was preferable, which resulted in fast
cell growth and high 1,3-propanediol concentration. The NAD+/NADH ratio was determined at different ORP levels, and a critical NAD+/NADH ratio of 4 was defined to divide fermentation environments into two categories: relatively oxidative environment (NAD+/NADH>4) and relatively reductive environment (NAD+/NADH<4). The former was correlative with high 1,3-propanediol productivity and high specific growth rate. The mechanism of
ORP regulation was discussed. It is suggested that ORP regulation of fermentation might be due to its influence on the ratio
of NAD+/NADH, which determined metabolic flux. Furthermore, a batch fermentation of modulating ORP following a profile in different
levels corresponding to different fermentation stage was tested. The 1,3-PD concentration was 22.3% higher than that of constant
ORP fermentation at −190 mV. Therefore, ORP is a valuable parameter to monitor and control anaerobic fermentation production. 相似文献
4.
在5 L发酵罐进行甘油脉冲流加发酵,分析了不同pH值对克雷伯氏肺炎杆菌发酵特性的影响,pH 6.5为菌体最佳生长条件,克雷伯氏肺炎杆菌合成1,3-丙二醇的产量最高。在1,3-丙二醇合成速率较大的对数中前期,进行甘油脉冲流加发酵,提高甘油浓度促进甘油脱水酶、1,3-丙二醇氧化还原酶和甘油脱氢酶活性。不同pH值的脉冲试验表明,甘油脱水酶,2,3-丁二醇脱氢酶比酶活随着pH值的升高而升高,1,3-丙二醇氧化还原酶,乳酸脱氢酶比酶活在pH6.5最高,因此偏酸性的发酵条件和对数期维持一定的甘油浓度能够促进1,3-丙二醇的合成。 相似文献
5.
Aims: To examine the potential use of hemicellulose hydrolysate (HH) for the production of chitosan by Rhizopus oryzae and investigate the influence of contents in HH on mycelia growth and chitosan synthesis. Methods and Results: Compared to xylose medium, HH enhanced mycelia growth, chitosan content and production of R. oryzae by 10·2, 64·5 and 82·1%, respectively. During sulfuric acid hydrolysis of corn straw, sugars (glucose, galactose, etc) and inhibitors (formic acid, acetic acid and furfural) were generated. Acetic acid (2·14 g l?1) and formic acid (0·83 g l?1) were stimulative, while furfural (0·55 g l?1) was inhibitory. Inhibitors, at different concentrations, increased the mycelia growth and chitosan production by 24·5–37·8 and 60·1–207·1%. Conclusions: HH of corn straw is a good source for chitosan production. Inhibitors in HH, at proper concentrations, can enhance chitosan production greatly. Significance and Impact of the Study: This work for the first time reported chitosan production from HH. Chitosan production can be greatly enhanced by cheap chemicals such as inhibitors in HH. 相似文献
6.
Jeong-Woo Seo Mi-Young Seo Baek-Rock Oh Sun-Yeon Heo Jin-Oh Baek Dina Rairakhwada Lian Hua Luo Won-Kyung Hong Chul Ho Kim 《Applied microbiology and biotechnology》2010,85(3):659-666
In a previous study, we showed that 1,3-propanediol (1,3-PD) was still produced from glycerol by the Klebsiella pneumoniae mutant strain defective in 1,3-PD oxidoreductase (DhaT), although the production level was lower compared to the parent strain.
As a potential candidate for another putative 1,3-PD oxidoreductase, we identified and characterized a homolog of Escherichia coli yqhD (88% homology in amino acid sequence), which encodes an alcohol dehydrogenase and is well known to replace the function of
DhaT in E. coli. Introduction of multiple copies of the yqhD homolog restored 1,3-PD production in the mutant K. pneumoniae strain defective in DhaT. In addition, by-product formation was still eliminated in the recombinant strain due to the elimination
of the glycerol oxidative pathway. An increase in NADP-dependent 1,3-PD oxidoreductase activity was observed in the recombinant
strain harboring multiple copies of the yqhD homolog. The level of 1,3-PD production during batch fermentation in the recombinant strain was comparable to that of the
parent strain; further engineering can generate an industrial strain producing 1,3-propanediol. 相似文献
7.
Fatma Gizem Avci Damla Huccetogullari Nuri Azbar 《Bioprocess and biosystems engineering》2014,37(3):513-519
The effects of both biomass age and cell recycling on the 1,3-propanediol (1,3-PDO) production by Klebsiella pneumoniae were investigated in a membrane-supported bioreactor using hollow-fiber ultrafiltration membrane module in two separate experiments. It was determined that older cells have a negative effect on 1,3-PDO production. The concentrations of by-products, such as acetic acid and ethanol, increased in cultures with older cells, whereas the concentrations of succinic acid, lactic acid and 2,3-butanediol decreased. The effect of cell recycling was comparatively studied at a cell recycling ratio of 100 %. The results showed that cell recycling had also negative effects on 1,3-PDO fermentation. It was hypothesized that both cell recycling and biomass age caused metabolic shifts to undesired by-products which then inhibited the 1,3-PDO production. On the other hand, the use of hollow-fiber ultrafiltration membrane module was found to be very effective in terms of removal of cells from the fermentation broth. 相似文献
8.
The influence of lignin degradation products on xylose fermentation by Klebsiella pneumoniae 总被引:1,自引:0,他引:1
Nora K. Nishikawa Roger Sutcliffe John N. Saddler 《Applied microbiology and biotechnology》1988,27(5-6):549-552
Summary The inhibitory effects of seven closely related lignin degradation products on xylose fermentation by Klebsiella pneumoniae were studied. Compounds were added in varying concentrations. Less heavily substituted phenolics (at concentrations of, 0.1–0.4 g/l) were more inhibitory to growth and solvent production than vanillyl or syringyl derivatives. All of the cultures recovered from this inhibition after a prolonged incubation period. When the mechanism of the organism's recovery was investigated, GC and LC analysis showed that 43.5% of the vanillin was metabolized to vanillyl alcohol. Several unidentifiable compounds were also detected in trace amounts. K. pneumoniae also metabolized vanilly alcohol (54% of original supplement) and syringaldehyde; however, unlike vanillin, there was no predominant metabolite derived from these compounds. None of the metabolites derived from vanillyl alcohol could be identified while only the corresponding alcohol and trimethoxybenzene were identified among the syringaldehyde derived metabolites. 相似文献
9.
10.
对肺炎克雷伯氏菌(Klebsiella pneumoniae)发酵生产1,3-丙二醇(1,3-Propanediol,1,3-PD)的补碱策略进行了研究.分别利用NaOH、氨水、KOH三种溶液作为pH调节剂,优化三种pH调节剂并得到按一定比例混合的混合碱.当采用混合碱调控发酵pH值为7.0时,1,3-丙二醇的产量达到了55 g/L,比无pH调控(对照)发酵过程发酵水平提高了10.6倍. 相似文献
11.
12.
Production of 1,3-propanediol (1,3-PD) from glycerol by Klebsiella pneumoniae is restrained by ethanol formation. The first step in the formation of ethanol from acetyl-CoA is catalyzed by aldehyde dehydrogenase (ALDH), an enzyme that competes with 1,3-PD oxidoreductase for the cofactor NADH. This study aimed to improve the production of 1,3-PD by engineering the ethanol formation pathway. An inactivation mutation of the aldA gene encoding ALDH in K. pneumoniae YMU2 was generated by insertion of a tetracycline resistance marker. Inactivation of ALDH resulted in a nearly abolished ethanol formation but a significantly improved 1,3-PD production. Metabolic flux analysis revealed that a pronounced redistribution of intracellular metabolic flux occurred. The final titer, the productivity of 1,3-PD and the yield of 1,3-PD relative to glycerol of the mutant strain reached 927.6 mmol L(-1), 14.05 mmol L(-1)h(-1) and 0.699 mol mol(-1), respectively, which were much higher than those of the parent strain. In addition, the specific 1,3-PD-producing capability (1,3-PD produced per gram of cells) of the mutant strain was 2-fold that of the parent strain due to a lower growth yield of the mutant. By increasing NADH availability, this study demonstrates an important metabolic engineering approach to improve the efficiency of oxidoreduction-coupled bioprocesses. 相似文献
13.
14.
1,3-Propanediol (1,3-PDO) is an important platform chemical which has a wide application in food, cosmetics, pharmaceutical and textile industries. Its biological production using recombinant Escherichia coli with glucose as carbon source has been commercialized by DuPont, but E. coli cannot synthesize coenzyme B12 which is an essential and expensive cofactor of glycerol dehydratase, a core enzyme in 1,3-PDO biosynthesis. This study aims to develop a more economical microbial cell factory using Klebsiella pneumoniae J2B which can naturally synthesize coenzyme B12. To this end, the heterologous pathway for the production of glycerol from dihydroxyacetone-3-phosphate (DHAP), a glycolytic intermediate, was introduced to J2B and, afterwards, the strain was extensively modified for carbon and energy metabolisms including: (i) removal of carbon catabolite repression, (ii) blockage of glycerol export across the cell membrane, (iii) improvement of NADH regeneration/availability, (iv) modification of TCA cycle and electron transport chain, (v) overexpression of 1,3-PDO module enzyme, and (vi) overexpression of glucose transporter. A total of 33 genes were modified and/or overexpressed, and one resulting strain could produce 814 mM (62 g/L) of 1,3-PDO with the yield of 1.27 mol/mol glucose in fed-batch bioreactor culture with a limited supplementation of coenzyme B12 at 4 μM, which is ~10 fold less than that employed by DuPont. This study highlights the importance of balanced use of glucose in the production of carbon backbone of the target chemical (1,3-PDO) and regeneration of reducing power (NADH). This study also suggests that K. pneumoniae J2B is a promising host for the production of 1,3-PDO from glucose. 相似文献
15.
Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation 总被引:3,自引:0,他引:3
During pretreatment and hydrolysis of fiber-rich agricultural biomass, compounds such as salts, furfural, hydroxymethyl furfural (HMF), acetic, ferulic, glucuronic, rho-coumaric acids, and phenolic compounds are produced. Clostridium beijerinckii BA101 can utilize the individual sugars present in lignocellulosic [e.g., corn fiber, distillers dry grain solubles (DDGS), etc] hydrolysates such as cellobiose, glucose, mannose, arabinose, and xylose. In these studies we investigated the effect of some of the lignocellulosic hydrolysate inhibitors associated with C. beijerinckii BA101 growth and acetone-butanol-ethanol (ABE) production. When 0.3 g/L rho-coumaric and ferulic acids were introduced into the fermentation medium, growth and ABE production by C. beijerinckii BA101 decreased significantly. Furfural and HMF are not inhibitory to C. beijerinckii BA101; rather they have stimulatory effect on the growth of the microorganism and ABE production. 相似文献
16.
【目的】提高克雷伯氏菌胞内还原力以强化1,3-丙二醇合成。【方法】将来源于大肠杆菌的木糖异构酶基因在克雷伯氏菌中异源表达,构建重组菌。研究重组菌添加不同浓度木糖为辅底物与甘油共发酵过程中代谢产物和NADH的变化规律。【结果】与对照菌相比,重组菌细胞内还原力NADH提高了0.1?0.3倍,1,3-丙二醇产量达到23.31 g/L,提高20%,1,3-丙二醇转化率从0.60 mol/mol提高到0.73 mol/mol。【结论】木糖异构酶基因的表达强化了木糖代谢途径,经磷酸戊糖途径积累大量还原力,促进了1,3-丙二醇的生成。 相似文献
17.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12. 相似文献
18.
1,3-丙二醇氧化还原酶是甘油歧化为1,3-丙二醇的一种关键酶。本研究从克雷伯肺炎杆菌(Klebsiella pneumoniae)基因组中,用PCR方法克隆了其编码基因dhaT。TA克隆测序正确后,构建胞内表达载体pET-28a-dhaT和分泌表达载体pET-22b-dhaT,然后转化E.coliBL21(DE3)进行原核表达。表达部位确定、SDS-PAGE和酶活分析表明,该酶得到了高水平表达。其中使用pET-22b表达的目的蛋白大都是不溶的包涵体;而使用pET-28a表达的目的蛋白胞内可溶,占胞内可溶总蛋白的45%,占菌体总蛋白的25%。常规(30℃)诱导表达即呈现1,3-丙二醇氧化还原酶活性,但低温(20℃)14 h诱导显示3.7倍的酶活性。 相似文献
19.
Sung-Mok Lee Won-Kyung Hong Sun-Yeon Heo Jang Min Park You Ree Jung Baek-Rock Oh Min-Ho Joe Jeong-Woo Seo Chul Ho Kim 《Journal of industrial microbiology & biotechnology》2014,41(8):1259-1266
The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol. 相似文献
20.
Park Jong Myoung Rathnasingh Chelladurai Song Hyohak 《Journal of industrial microbiology & biotechnology》2017,44(3):431-441
Journal of Industrial Microbiology & Biotechnology - Klebsiella pneumoniae naturally produces relatively large amounts of 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD) along with various... 相似文献