首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendritic cells (DCs) regulate the development of distinct Th populations and thereby provoke appropriate immune responses to various kinds of Ags. In the present work, we investigated the role CD40-CD154 interactions play during the process of Th cell priming by CD8 alpha(+) and CD8 alpha(-) murine DC subsets, which have been reported to differently regulate the Th response. Adoptive transfer of Ag-pulsed CD8 alpha(+) DCs induced a Th1 response and the production of IgG2a Abs, whereas transfer of CD8 alpha(-) DCs induced Th2 cells and IgE Abs in vivo. Induction of distinct Th populations by each DC subset was also confirmed in vitro. Although interruption of CD80/CD86-CD28 interactions inhibited Th cell priming by both DC subsets, disruption of CD40-CD154 interactions only inhibited the induction of the Th1 response by CD8 alpha(+) DCs in vivo. CD40-CD154 interactions were not required for the proliferation of Ag-specific naive Th cells stimulated by either DC subset, but were indispensable in the production of IL-12 from CD8 alpha(+) DCs and their induction of Th1 cells in vitro. Taken together, in our immunization model of Ag-pulsed DC transfer, CD40-CD154 interactions play an important role in the development of CD8 alpha(+) DC-driven Th1 responses but not CD8 alpha(-) DC-driven Th2 responses to protein Ags.  相似文献   

2.
Th1 and Th2 cells mutually antagonize each other's differentiation. Consequently, allergen-specific Th1 cells are believed to be able to suppress the development of Th2 cells and to prevent the development of atopic disorders. To determine whether a pre-existing Ag-specific Th1 response can affect the development of Th2 cells in vivo, we used an immunization model of Ag-pulsed murine dendritic cell (DC) transfer to induce distinct Th responses. When transferred into naive mice, Ag-pulsed CD8alpha(+) DCs induced a Th1 response and the production of IgG2a, whereas CD8alpha(-) DCs primed a Th2 response and the production of IgE. In the presence of a pre-existing Ag-specific Th2 environment due to Ag-pulsed CD8alpha(-) DC transfer, CD8alpha(+) DCs failed to prime Th1 cells. In contrast, CD8alpha(-) DCs could prime a Th2 response in the presence of a pre-existing Ag-specific Th1 environment. Moreover, exogenous IL-4 abolished the Th1-inducing potential of CD8alpha(+) DCs in vitro, but the addition of IFN-gamma did not effectively inhibit the potential of CD8alpha(-) DCs to prime IL-4-producing cells. Thus, Th1 and Th2 cells differ in their potential to inhibit the development of the other. This suggests that the early induction of allergen-specific Th1 cells before allergy sensitization will not prevent the development of atopic disorders.  相似文献   

3.
The cytokine milieu and dendritic cells (DCs) direct Th1 development. Yet, the control of Th1 polarization by T cell surface molecules remains ill-defined. We here report that CD47 expression on T cells serves as a self-control mechanism to negatively regulate type 1 cellular and humoral immune responses in vivo. Th2-prone BALB/c mice that lack CD47 (CD47(-/-)) displayed a Th1-biased Ab profile at steady state and after immunization with soluble Ag. CD47(-/-) mice mounted a T cell-mediated exacerbated and sustained contact hypersensitivity (CHS) response. After their adoptive transfer to naive CD47-deficient hosts 1 day before immunization with soluble Ag, CD47(-/-) as compared with CD47(+/+)CD4(+) transgenic (Tg) T cells promoted the deviation of Ag-specific T cell responses toward Th1 that were characterized by a high IFN-gamma:IL-4 cytokine ratio. Although selective CD47 deficiency on DCs led to increased IL-12p70 production, CD47(-/-)Tg T cells produced more IFN-gamma and displayed higher T-bet expression than CD47(+/+) Tg T cells in response to OVA-loaded CD47(-/-) DCs. CD47 as part of the host environment has no major contribution to the Th1 polarization responses. We thus identify the CD47 molecule as a T cell-negative regulator of type 1 responses that may limit unwanted collateral damage to maximize protection and minimize host injury.  相似文献   

4.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

5.
Nanoparticles are considered to be efficient tools for inducing potent immune responses by an Ag carrier. In this study, we examined the effect of Ag-carrying biodegradable poly(gamma-glutamic acid) (gamma-PGA) nanoparticles (NPs) on the induction of immune responses in mice. The NPs were efficiently taken up by dendritic cells (DCs) and subsequently localized in the lysosomal compartments. gamma-PGA NPs strongly induced cytokine production, up-regulation of costimulatory molecules, and the enhancement of T cell stimulatory capacity in DCs. These maturational changes of DCs involved the MyD88-mediated NF-kappaB signaling pathway. In vivo, gamma-PGA NPs were preferentially internalized by APCs (DCs and macrophages) and induced the production of IL-12p40 and IL-6. The immunization of mice with OVA-carrying NPs induced Ag-specific CTL activity and Ag-specific production of IFN-gamma in splenocytes as well as potent production of Ag-specific IgG1 and IgG2a Abs in serum. Furthermore, immunization with NPs carrying a CD8(+) T cell epitope peptide of Listeria monocytogenes significantly protected the infected mice from death. These results suggest that Ag-carrying gamma-PGA NPs are capable of inducing strong cellular and humoral immune responses and might be potentially useful as effective vaccine adjuvants for the therapy of infectious diseases.  相似文献   

6.
A number of receptors and signaling pathways can influence the ability of dendritic cells (DC) to promote CD4(+) Th type 1 (Th1) responses. In contrast, the regulatory pathways and signaling events that govern the ability of DC to instruct Th2 cell differentiation remain poorly defined. In this report, we demonstrate that NF-kappaB1 expression within DC is required to promote optimal Th2 responses following exposure to Schistosoma mansoni eggs, a potent and natural Th2-inducing stimulus. Although injection of S. mansoni eggs induced production of IL-4, IL-5, and IL-13 in the draining lymph node of wild-type (WT) mice, NF-kappaB1(-/-) hosts failed to express Th2 cytokines and developed a polarized Ag-specific IFN-gamma response. In an in vivo adoptive transfer model in which NF-kappaB-sufficient OVA-specific DO11.10 TCR transgenic T cells were injected into OVA-immunized WT or NF-kappaB1(-/-) hosts, NF-kappaB1(-/-) APCs efficiently promoted CD4(+) T cell proliferation and IFN-gamma responses, but failed to promote Ag-specific IL-4 production. Further, bone marrow-derived DC from NF-kappaB1(-/-) mice failed to promote OVA-specific Th2 cell differentiation in in vitro coculture studies. Last, S. mansoni egg Ag-pulsed NF-kappaB1(-/-) DC failed to prime for Th2 cytokine responses following injection into syngeneic WT hosts. Impaired Th2 priming by NF-kappaB1(-/-) DC was accompanied by a reduction in MAPK phosphorylation in Ag-pulsed DC. Taken together, these studies identify a novel requirement for DC-intrinsic expression of NF-kappaB1 in regulating the MAPK pathway and governing the competence of DC to instruct Th2 cell differentiation.  相似文献   

7.
Vaccine-induced protection against diseases like malaria, AIDS, and cancer may require induction of Ag-specific CD8(+) and CD4(+) T cell and Ab responses in the same individual. In humans, a recombinant Plasmodium falciparum circumsporozoite protein (PfCSP) candidate vaccine, RTS,S/adjuvant system number 2A (AS02A), induces T cells and Abs, but no measurable CD8(+) T cells by CTL or short-term (ex vivo) IFN-gamma ELISPOT assays, and partial short-term protection. P. falciparum DNA vaccines elicit CD8(+) T cells by these assays, but no protection. We report that sequential immunization with a PfCSP DNA vaccine and RTS,S/AS02A induced PfCSP-specific Abs and Th1 CD4(+) T cells, and CD8(+) cytotoxic and Tc1 T cells. Depending upon the immunization regime, CD4(+) T cells were involved in both the induction and production phases of PfCSP-specific IFN-gamma responses, whereas, CD8(+) T cells were involved only in the production phase. IFN-gamma mRNA up-regulation was detected in both CD45RA(-) (CD45RO(+)) and CD45RA(+)CD4(+) and CD8(+) T cell populations after stimulation with PfCSP peptides. This finding suggests CD45RA(+) cells function as effector T cells. The induction in humans of the three primary Ag-specific adaptive immune responses establishes a strategy for developing immunization regimens against diseases in desperate need of vaccines.  相似文献   

8.
Experimental studies in monkeys on the basis of ex vivo-generated, reinjected dendritic cells (DCs) allow investigations of primate DC biology in vivo. To study in vitro and in vivo properties of DCs with a reduced capacity to produce IL-12, we adapted findings obtained in vitro with human cells to the rhesus macaque model. Following exposure of immature monocyte-derived monkey DCs to the immunomodulating synthetic polypeptide glatiramer acetate (GA) and to dibutyryl-cAMP (d-cAMP; i.e., a cAMP enhancer that activates DCs but inhibits the induction of Th1 immune responses), the resulting DCs displayed a mature phenotype with enhanced Ag-specific T cell stimulatory function, notably also for memory Th1 cells. Phosphorylation of p38 MAPK was not induced in GA/d-cAMP-activated DCs. Accordingly, these cells secreted significantly less IL-12p40 (p < or = 0.001) than did cytokine-activated cells. However, upon restimulation with rhesus macaque CD154, GA/d-cAMP-activated DCs produced IL-12p40/IL-23. Additionally, DCs activated by proinflammatory cytokines following protocols for the generation of cells used in clinical studies secreted significantly more IL-23 upon CD154 restimulation than following prior activation. Two days after intradermal injection, GA/d-cAMP-activated fluorescence-labeled DCs were detected in the T cell areas of draining lymph nodes. When similarly injected, GA/d-cAMP as well as cytokine-activated protein-loaded DCs induced comparable Th immune responses characterized by secretion of IFN-gamma, TNF, and IL-17, and transiently expanded FOXP3(+) regulatory T cells. Reactivation of primate DCs through CD154 considerably influences their immmunostimulatory properties. This may have a substantial impact on the development of innovative vaccine approaches.  相似文献   

9.
Previously, we showed that nasal administration of a naked cDNA plasmid expressing Flt3 ligand (FL) cDNA (pFL) enhanced CD4(+) Th2-type, cytokine-mediated mucosal immunity and increased lymphoid-type dendritic cell (DC) numbers. In this study, we investigated whether targeting nasopharyngeal-associated lymphoreticular tissue (NALT) DCs by a different delivery mode of FL, i.e., an adenovirus (Ad) serotype 5 vector expressing FL (Ad-FL), would provide Ag-specific humoral and cell-mediated mucosal immunity. Nasal immunization of mice with OVA plus Ad-FL as mucosal adjuvant elicited high levels of OVA-specific Ab responses in external secretions and plasma as well as significant levels of OVA-specific CD4(+) T cell proliferative responses and OVA-induced IFN-gamma and IL-4 production in NALT, cervical lymph nodes, and spleen. We also observed higher levels of OVA-specific CTL responses in the spleen and cervical lymph nodes of mice given nasal OVA plus Ad-FL than in mice receiving OVA plus control Ad. Notably, the number of CD11b(+)CD11c(+) DCs expressing high levels of costimulatory molecules was preferentially increased. These DCs migrated from the NALT to mucosal effector lymphoid tissues. Taken together, these results suggest that the use of Ad-FL as a nasal adjuvant preferentially induces mature-type NALT CD11b(+)CD11c(+) DCs that migrate to effector sites for subsequent CD4(+) Th1- and Th2-type cytokine-mediated, Ag-specific Ab and CTL responses.  相似文献   

10.
Plasmacytoid dendritic cells (pDC) are capable of producing high levels of type I IFNs upon viral stimulation, and play a central role in modulating innate and adaptive immunity against viral infections. Whereas many studies have assessed myeloid dendritic cells (mDC) in the induction of antitumor immune responses, the role of pDC in antitumor immunity has not been addressed. Moreover, the interaction of pDC with other dendritic cell subsets has not been evaluated. In this study, we analyzed the capacity of pDC in stimulating an Ag-specific T cell response. Immunization of mice with Ag-pulsed, activated pDC significantly augmented Ag-specific CD8(+) CTL responses, and protected mice from a subsequent tumor challenge. Immunization with a mixture of activated pDC plus mDC resulted in increased levels of Ag-specific CD8(+) T cells and an enhanced antitumor response compared with immunization with either dendritic cell subset alone. Synergy between pDC and mDC in their ability to activate T cells was dependent on MHC I expression by mDC, but not pDC, suggesting that pDC enhanced the ability of mDC to present Ag to T cells. Our results demonstrate that pDC and mDC can interact synergistically to induce an Ag-specific antitumor immune response in vivo.  相似文献   

11.
CD100 belongs to the semaphorin family, several members of which are known to act as repulsive axonal guidance factors during neuronal development. We have previously demonstrated that CD100 plays a crucial role in humoral immunity. In this study, we show that CD100 is also important for cellular immunity through the maturation of dendritic cells (DCs). CD100(-/-) mice fail to develop experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein peptide, because myelin oligodendrocyte glycoprotein-specific T cells are not generated in the absence of CD100. In vitro studies with T cells from OVA-specific TCR-transgenic mice demonstrate that Ag-specific T cells lacking CD100 fail to differentiate into cells producing either IL-4 or IFN-gamma in the presence of APCs and OVA peptide. In addition, DCs from CD100(-/-) mice display poor allostimulatory capabilities and defects in costimulatory molecule expression and IL-12 production. The addition of exogenous soluble rCD100 restores normal functions in CD100(-/-) DCs and further enhances functions of normal DCs. Furthermore, treatment of Ag-pulsed DCs with both soluble CD100 and anti-CD40 before immunization significantly enhances their immunogenicity. This treatment elicits improved T cell priming in vivo, enhancing both primary and memory T cell responses. Collectively, these results demonstrate that CD100, which enhances the maturation of DCs, is essential in the activation and differentiation of Ag-specific T cells.  相似文献   

12.
The recently delineated role for IL-23 in enhancing Th-17 activity suggests that regulation of its expression is distinct from that of IL-12. We hypothesized that independent TLR-mediated pathways are involved in the regulation of IL-12 and IL-23 production by myeloid-derived dendritic cells (DCs). The TLR 2 ligand, lipoteichoic acid (LTA), the TLR 4 ligand, LPS, and the TLR 7/8 ligand, resimiquod (R848), induced production of IL-23 by DCs. None of these TLR ligands alone induced significant IL-12 production, except when combined with IFN-gamma or other TLR ligands. Notably, IL-23 production in response to single TLR ligands was inhibited by IL-4. DCs treated with single TLR agonists induced IL-17A production by allogeneic and Ag-specific memory CD4(+) T cells, an effect that was abrogated by IL-23 neutralization. Moreover, these DCs stimulated IL-17A production by tumor peptide-specific CD8(+) T cells. In contrast, DCs treated with dual signals induced naive and memory Th1 responses and enhanced the functional avidity of tumor-specific CD8(+) T cells. These results indicate that distinct microbial-derived stimuli are required to drive myeloid DC commitment to IL-12 or IL-23 production, thereby differentially polarizing T cell responses.  相似文献   

13.
AIMP1 (ARS-interacting multifunctional protein 1), previously known as p43, was initially identified as a factor associated with a macromolecular tRNA synthetase complex. Recently, we demonstrated that AIMP1 is also secreted and acts as a novel pleiotropic cytokine. In this study, we investigated whether AIMP1 induces the activation and maturation of murine bone marrow-derived dendritic cells (DCs). AIMP1-treated DCs exhibited up-regulated expression of cell-surface molecules, including CD40, CD86, and MHC class II. Additionally, microarray analysis and RT-PCR determinations indicated that the expression of known DC maturation genes also increased significantly following treatment with AIMP1. Treatment of DCs with AIMP1 resulted in a significant increase in IL-12 production and Ag-presenting capability, and it also stimulated the proliferation of allogeneic T cells. Importantly, AIMP1-treated DCs induced activation of Ag-specific Th type 1 (Th1) cells in vitro and in vivo. AIMP1-stimulated DCs significantly enhanced the IFN-gamma production of cocultured CD4+ T cells. Immunization of mice with keyhole limpet hemocyanin-pulsed AIMP1 DCs efficiently led to Ag-specific Th1 cell responses, as determined by flow cytometry and ELISA. The addition of a neutralizing anti-IL-12 mAb to the cell cultures that had been treated with AIMP1 resulted in the decreased production of IFN-gamma, thereby indicating that AIMP1-stimulated DCs may enhance the Th1 response through increased production of IL-12 by APCs. Taken together, these results indicate that AIMP1 protein induces the maturation and activation of DCs, which skew the immune response toward a Th1 response.  相似文献   

14.
CD25(+) regulatory T (T reg) cells suppress the activation/proliferation of other CD4(+) or CD8(+) T cells in vitro. Also, down-regulation of CD25(+) T reg cells enhance antitumor immune responses. In this study, we show that depletion of CD25(+) T reg cells allows the host to induce both CD4(+) and CD8(+) antitumoral responses following tumor challenge. Simultaneous depletion of CD25(+) and CD8(+) cells, as well as adoptive transfer experiments, revealed that tumor-specific CD4(+) T cells, which emerged in the absence of CD25(+) T reg cells, were able to reject CT26 colon cancer cells, a MHC class II-negative tumor. The antitumoral effect mediated by CD4(+) T cells was dependent on IFN-gamma production, which exerted a potent antiangiogenic activity. The capacity of the host to mount this antitumor response is lost once the number of CD25(+) T reg cells is restored over time. However, CD25(+) T reg cell depletion before immunization with AH1 (a cytotoxic T cell determinant from CT26 tumor cells) permits the induction of a long-lasting antitumoral immune response, not observed if immunization is conducted in the presence of regulatory cells. A study of the effect of different levels of depletion of CD25(+) T reg cells before immunization with the peptide AH1 alone, or in combination with a Th determinant, unraveled that Th cells play an important role in overcoming the suppressive effect of CD25(+) T reg on the induction of long-lasting cellular immune responses.  相似文献   

15.
Decline in cellular immunity in aging compromises protection against infectious diseases and leads to the increased susceptibility of the elderly to infection. In particular, Ag-specific cytotoxic T lymphocyte (CTL) response against virus is markedly reduced in an aged immune system. It is of great importance to explore novel strategy in eliciting effective antiviral CTL activity in the elderly. In this study, the efficacy and mechanisms of immunization with immune complexes in overcoming age-associated deficiency in cellular immunity were investigated. In this study, we show that the severely depressed CTL response to influenza A in aged mice can be significantly restored by immunization with immune complexes consisting of influenza A virus and mAb to influenza A nucleoprotein. The main mechanisms underlying this recovery of CTL response induced by immune complex immunization in aged mice are enhanced dendritic cell function and elevated production of IFN-gamma in both CD4(+) Th1 and CD8(+) CTLs. Thus, these results demonstrate that immune complex immunization may represent a novel strategy to elicit effective virus-specific cytotoxic response in an aged immune system, and possibly, to overcome age-related immune deficiency in general.  相似文献   

16.
The adaptive immune system has evolved distinct responses against different pathogens, but the mechanism(s) by which a particular response is initiated is poorly understood. In this study, we investigated the type of Ag-specific CD4(+) Th and CD8(+) T cell responses elicited in vivo, in response to soluble OVA, coinjected with LPS from two different pathogens. We used Escherichia coli LPS, which signals through Toll-like receptor 4 (TLR4) and LPS from the oral pathogen Porphyromonas gingivalis, which does not appear to require TLR4 for signaling. Coinjections of E. coli LPS + OVA or P. gingivalis LPS + OVA induced similar clonal expansions of OVA-specific CD4(+) and CD8(+) T cells, but strikingly different cytokine profiles. E. coli LPS induced a Th1-like response with abundant IFN-gamma, but little or no IL-4, IL-13, and IL-5. In contrast, P. gingivalis LPS induced Th and T cell responses characterized by significant levels of IL-13, IL-5, and IL-10, but lower levels of IFN-gamma. Consistent with these results, E. coli LPS induced IL-12(p70) in the CD8alpha(+) dendritic cell (DC) subset, while P. gingivalis LPS did not. Both LPS, however, activated the two DC subsets to up-regulate costimulatory molecules and produce IL-6 and TNF-alpha. Interestingly, these LPS appeared to have differences in their ability to signal through TLR4; proliferation of splenocytes and cytokine secretion by splenocytes or DCs from TLR4-deficient C3H/HeJ mice were greatly impaired in response to E. coli LPS, but not P. gingivalis LPS. Therefore, LPS from different bacteria activate DC subsets to produce different cytokines, and induce distinct types of adaptive immunity in vivo.  相似文献   

17.
WSX-1 is the alpha subunit of the IL-27R complex expressed by T, B, NK/NKT cells, as well as macrophages and dendritic cells (DCs). Although it has been shown that IL-27 has both stimulatory and inhibitory effects on T cells, little is known on the role of IL-27/WSX-1 on DCs. LPS stimulation of splenic DCs in vivo resulted in prolonged CD80/CD86 expression on WSX-1-deficient DCs over wild-type DCs. Upon LPS stimulation in vitro, WSX-1-deficient DCs expressed Th1-promoting molecules higher than wild-type DCs. In an allogeneic MLR assay, WSX-1-deficient DCs were more potent than wild-type DCs in the induction of proliferation of and IFN-gamma production by responder cell proliferation. When cocultured with purified NK cells, WSX-1-deficient DCs induced higher IFN-gamma production and killing activity of NK cells than wild-type DCs. As such, Ag-pulsed WSX-1-deficient DCs induced Th1-biased strong immune responses over wild-type DCs when transferred in vivo. WSX-1-deficient DCs were hyperreactive to LPS stimulation as compared with wild-type DCs by cytokine production. IL-27 suppressed LPS-induced CD80/86 expression and cytokine production by DCs in vitro. Thus, our study demonstrated that IL-27/WSX-1 signaling potently down-regulates APC function and Th1-promoting function of DCs to modulate overall immune responses.  相似文献   

18.
Severe injury induces detrimental changes in immune function, often leaving the host highly susceptible to developing life-threatening opportunistic infections. Advances in our understanding of how injury influences host immune responses suggest that injury causes a phenotypic imbalance in the regulation of Th1- and Th2-type immune responses. We report in this study, using a TCR transgenic CD4(+) T cell adoptive transfer approach, that injury skews T cell responses toward increased Th2-type reactivity in vivo without substantially limiting Ag-driven CD4(+) T cell expansion. The increased Th2-type response did not occur unless injured mice were immunized with specific Ag, suggesting that the phenotypic switch is Ag dependent. These findings establish that severe injury induces fundamental changes in the induction of Ag-specific CD4(+) Th cell responses favoring the development of Th2-type immune reactivity in vivo.  相似文献   

19.
It has previously been reported that cholera toxin (CT) is a potent mucosal adjuvant that enhances Th2 or mixed Th1/Th2 type responses to coadministered foreign Ag. Here we demonstrate that CT also promotes the generation of regulatory T (Tr) cells against bystander Ag. Parenteral immunization of mice with Ag in the presence of CT induced T cells that secreted high levels of IL-4 and IL-10 and lower levels of IL-5 and IFN-gamma. Ag-specific CD4(+) T cell lines and clones generated from these mice had cytokine profiles characteristic of Th2 or type 1 Tr cells, and these T cells suppressed IFN-gamma production by Th1 cells. Furthermore, adoptive transfer of bone marrow-derived dendritic cells (DC) incubated with Ag and CT induced T cells that secreted IL-4 and IL-10 and low concentrations of IL-5. It has previously been shown that IL-10 promotes the differentiation or expansion of type 1 Tr cells. Here we found that CT synergized with low doses of LPS to induce IL-10 production by immature DC. CT also enhanced the expression of CD80, CD86, and OX40 (CD134) on DC and induced the secretion of the chemokine, macrophage inflammatory protein-2 (MIP-2), but inhibited LPS-driven induction of CD40 and ICAM-I expression and production of the inflammatory cytokines/chemokines IL-12, TNF-alpha, MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein-1. Our findings suggest that CT induces maturation of DC, but, by inducing IL-10, inhibiting IL-12, and selectively affecting surface marker expression, suppresses the generation of Th1 cells and promotes the induction of T cells with regulatory activity.  相似文献   

20.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号