首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ExoS is a bifunctional Type III cytotoxin of Pseudomonas aeruginosa with N-terminal Rho GTPase-activating protein (RhoGAP) and C-terminal ADP-ribosyltransferase domains. Although the ExoS RhoGAP inactivates Cdc42, Rac, and RhoA in vivo, the relationship between ExoS RhoGAP and the eukaryotic regulators of Rho GTPases is not clear. The present study investigated the roles of Rho GTPase guanine nucleotide disassociation inhibitor (RhoGDI) in the reorganization of actin cytoskeleton mediated by ExoS RhoGAP. A green fluorescent protein-RhoGDI fusion protein was engineered and found to elicit actin reorganization through the inactivation of Rho GTPases. Green fluorescent protein-RhoGDI and ExoS RhoGAP cooperatively stimulated actin reorganization and translocation of Cdc42 from membrane to cytosol, and a RhoGDI mutant, RhoGDI(I177D), that is defective in extracting Rho GTPases off the membrane inhibited the actions of RhoGDI and ExoS RhoGAP on the translocation of Cdc42 from membrane to cytosol. A human RhoGDI small interfering RNA was transfected into HeLa cells to knock down 90% of the endogenous RhoGDI expression. HeLa cells with knockdown RhoGDI were resistant to the reorganization of the actin cytoskeleton elicited by type III-delivered ExoS RhoGAP. This indicates that ExoS RhoGAP and RhoGDI function in series to inactivate Rho GTPases, in which RhoGDI extracting GDP-bound Rho GTPases off the membrane and sequestering them in cytosol is the rate-limiting step in Rho GTPase inactivation. A eukaryotic GTPase-activating protein, p50RhoGAP, showed a similar cooperativity with RhoGDI on actin reorganization, suggesting that ExoS RhoGAP functions as a molecular mimic of eukaryotic RhoGAPs to inactivate Rho GTPases through RhoGDI.  相似文献   

2.
Introducing non-hydrolysable analogues of GTP into the cytosolic compartment of mast cells results in exocytotic secretion through the activation of GTP binding proteins. The identity and mechanism of action of these proteins are not established. We have investigated the effects of Rho GDP dissociation inhibitor (RhoGDI) on exocytosis induced by guanosine 5'-O-(3-thiotriphosphate) (GTP-gamma-S) in rat mast cells, introducing the protein into cells by means of a patch pipette and recording the progress of exocytosis by monitoring cell capacitance. To allow time for the protein to enter the cells and find its correct location, stimulation was provided 5-10 min after patch rupture by photolysing caged GTP-gamma-S included in the pipette solution. When bovine RhoGDI was introduced into mast cells, exocytosis was inhibited at concentrations of 200-400 nM for native protein and 800 nM to 8 microM for the recombinant form. Protein denatured by heat or N-ethylmaleimide treatment did not inhibit. In permeabilized cells, recombinant RhoGDI increased the rate at which cells lose their ability to respond to GTP-gamma-S. These data demonstrate that one or more small GTP binding proteins of the Rho family has a central role in the exocytotic mechanism in mast cells.  相似文献   

3.
Cholesterol entering cells in low-density lipoproteins (LDL) via receptor-mediated endocytosis is transported to organelles of the late endocytic pathway for degradation of the lipoprotein particles. The fate of the free cholesterol released remains poorly understood, however. Recent observations suggest that late-endosomal cholesterol sequestration is regulated by the dynamics of lysobisphosphatidic acid (LBPA)-rich membranes [1]. Genetic studies have pinpointed a protein, Niemann-Pick C-1 (NPC-1), that is required for the mobilization of late-endosomal/lysosomal cholesterol by an unknown mechanism [2]. Here, we report the removal of accumulated cholesterol by overexpression of the NPC-1 protein in NPC-1-deficient fibroblasts from patients with Niemann-Pick disease, and in normal fibroblasts upon release of a progesterone-induced block of cholesterol transport. We show that late-endosomal/lysosomal cholesterol mobilization is specifically inhibited by microinjection of Rab GDP-dissociation inhibitor (Rab-GDI). Moreover, clearance of the cholesterol deposits by NPC-1 in patients' fibroblasts is accompanied by the redistribution of LBPA and of a lysosomal hydrolase that utilizes the mannose-6-phosphate receptor. Our results reveal, for the first time, the involvement of a specific molecular component of the membrane-trafficking machinery in cholesterol transport and the coupling of late-endosomal cholesterol egress to the trafficking of other lipid and protein cargo.  相似文献   

4.
Transglutaminase 2 (TG2) is a multifunctional protein that has been implicated in numerous pathologies including that of neurodegeneration and celiac disease, but the molecular interactions that mediate its diverse activities are largely unknown. Bcr and the closely related Abr negatively regulate the small G-protein Rac: loss of their combined function in vivo results in increased reactivity of innate immune cells. Bcr and Abr are GTPase-activating proteins that catalyze the hydrolysis of the GTP bound to Rac. However, how the Bcr and Abr GTPase-activating activity is regulated is not precisely understood. We here report a novel mechanism of regulation through direct protein-protein interaction with TG2. TG2 bound to the Rac-binding pocket in the GTPase-activating domains of Bcr and Abr, blocked Bcr activity and, through this mechanism, increased levels of active GTP-bound Rac and EGF-stimulated membrane ruffling. TG2 exists in at least two different conformations. Interestingly, experiments using TG2 mutants showed that Bcr exhibits preferential binding to the non-compacted conformation of TG2, in which its catalytic domain is exposed, but transamidation is not needed for the interaction. Thus, TG2 regulates levels of cellular GTP-bound Rac and actin cytoskeletal reorganization through a new mechanism involving direct inhibition of Bcr GTPase-activating activity.  相似文献   

5.
Mammalian neuroglobin (Ngb) is involved in neuroprotection under oxidative stress conditions such as ischemia and reperfusion. However, the neuroprotective mechanism remains unclear. We previously demonstrated that human ferric Ngb binds to the α-subunits of heterotrimeric G proteins (Gαi/o) and acts as a guanine nucleotide dissociation inhibitor (GDI) for Gαi/o. In the present study, we used a protein delivery reagent, Chariot, to investigate whether the GDI activity of human Ngb plays an important role in its neuroprotective activity under oxidative stress conditions. We showed that human Ngb mutants, which retained GDI activities, rescued pheochromocytoma PC12 cell death caused by hypoxia/reoxygenation as did human wild-type Ngb. In contrast, zebrafish Ngb and human Ngb mutants, which did not function as GDI proteins, did not rescue cell death. These results clearly show that the GDI activity of human Ngb is tightly correlated with its neuroprotective activity.  相似文献   

6.
Phosphatases of the regenerating liver (PRL) play oncogenic roles in cancer development and metastasis. Although previous studies indicate that PRL-1 promotes cell growth and migration by activating both the ERK1/2 and RhoA pathways, the mechanism by which it activates these signaling events remains unclear. We have identified a PRL-1-binding peptide (Peptide 1) that shares high sequence identity with a conserved motif in the Src homology 3 (SH3) domain of p115 Rho GTPase-activating protein (GAP). p115 RhoGAP directly binds PRL-1 in vitro and in cells via its SH3 domain. Structural analyses of the PRL-1·Peptide 1 complex revealed a novel protein-protein interaction whereby a sequence motif within the PxxP ligand-binding site of the p115 RhoGAP SH3 domain occupies a folded groove within PRL-1. This prevents the canonical interaction between the SH3 domain of p115 RhoGAP and MEKK1 and results in activation of ERK1/2. Furthermore, PRL-1 binding activates RhoA signaling by inhibiting the catalytic activity of p115 RhoGAP. The results demonstrate that PRL-1 binding to p115 RhoGAP provides a coordinated mechanism underlying ERK1/2 and RhoA activation.  相似文献   

7.
Pleckstrin homology domains are structurally conserved functional domains that can undergo both protein/protein and protein/lipid interactions. Pleckstrin homology domains can mediate inter- and intra-molecular binding events to regulate enzyme activity. They occur in numerous proteins including many that interact with Ras superfamily members, such as p120 GAP. The pleckstrin homology domain of p120 GAP is located in the NH(2)-terminal, noncatalytic region of p120 GAP. Overexpression of the noncatalytic domains of p120 GAP may modulate Ras signal transduction pathways. Here, we demonstrate that expression of the isolated pleckstrin homology domain of p120 GAP specifically inhibits Ras-mediated signaling and transformation but not normal cellular growth. Furthermore, we show that the pleckstrin homology domain binds the catalytic domain of p120 GAP and interferes with the Ras/GAP interaction. Thus, we suggest that the pleckstrin homology domain of p120 GAP may specifically regulate the interaction of Ras with p120 GAP via competitive intra-molecular binding.  相似文献   

8.
The regulators of G-protein signaling (RGS) proteins accelerate the intrinsic guanosine triphosphatase activity of heterotrimeric G-protein alpha subunits and are thus recognized as key modulators of G-protein-coupled receptor signaling. RGS12 and RGS14 contain not only the hallmark RGS box responsible for GTPase-accelerating activity but also a single G alpha(i/o)-Loco (GoLoco) motif predicted to represent a second G alpha interaction site. Here, we describe functional characterization of the GoLoco motif regions of RGS12 and RGS14. Both regions interact exclusively with G alpha(i1), G alpha(i2), and G alpha(i3) in their GDP-bound forms. In GTP gamma S binding assays, both regions exhibit guanine nucleotide dissociation inhibitor (GDI) activity, inhibiting the rate of exchange of GDP for GTP by G alpha(i1). Both regions also stabilize G alpha(i1) in its GDP-bound form, inhibiting the increase in intrinsic tryptophan fluorescence stimulated by AlF(4)(-). Our results indicate that both RGS12 and RGS14 harbor two distinctly different G alpha interaction sites: a previously recognized N-terminal RGS box possessing G alpha(i/o) GAP activity and a C-terminal GoLoco region exhibiting G alpha(i) GDI activity. The presence of two, independent G alpha interaction sites suggests that RGS12 and RGS14 participate in a complex coordination of G-protein signaling beyond simple G alpha GAP activity.  相似文献   

9.
Neuroglobin (Ngb) is a newly discovered vertebrate heme protein that is expressed in the brain and can reversibly bind oxygen. It has been reported that Ngb expression levels increase in response to oxygen deprivation and that it protects neurons from hypoxia in vitro and in vivo. However, the mechanism of this neuroprotection remains unclear. In the present study, we tried to clarify the neuroprotective role of Ngb under oxidative stress in vitro. By surface plasmon resonance, we found that ferric Ngb, which is generated spontaneously as a result of the rapid autoxidation, binds exclusively to the GDP-bound form of the alpha subunit of heterotrimeric G protein (Galphai). In GDP dissociation assays or guanosine 5'-O-(3-thio)triphosphate binding assays, ferric Ngb behaved as a guanine nucleotide dissociation inhibitor (GDI), inhibiting the rate of exchange of GDP for GTP. The interaction of GDP-bound Galphai with ferric Ngb will liberate Gbetagamma, leading to protection against neuronal death. In contrast, ferrous ligand-bound Ngb under normoxia did not have GDI activities. Taken together, we propose that human Ngb may be a novel oxidative stress-responsive sensor for signal transduction in the brain.  相似文献   

10.
Guanine nucleotide dissociation inhibitor (GDI) is a 55-kDa protein that functions in vesicular membrane transport to recycle Rab GTPases. We have now determined the crystal structure of bovine α-GDI at ultra-high resolution (1.04 Å). Refinement at this resolution highlighted a region with high mobility of its main-chain residues. This corresponded to a surface loop in the primarily α-helical domain II at the base of α-GDI containing the previously uncharacterized sequence-conserved region (SCR) 3A. Site-directed mutagenesis showed that this mobile loop plays a crucial role in binding of GDI to membranes and extraction of membrane-bound Rab. This domain, referred to as the mobile effector loop, in combination with Rab-binding residues found in the multi-sheet domain I at the apex of α-GDI may provide flexibility for recycling of diverse Rab GTPases. We propose that conserved residues in domains I and II synergize to form the functional face of GDI, and that domain II mediates a critical step in Rab recycling during vesicle fusion.  相似文献   

11.
Pseudomonas aeruginosa exoenzyme S (ExoS) is a bifunctional cytotoxin. The ADP-ribosyltransferase domain is located within the C terminus part of ExoS. Recent studies showed that the N terminus part of ExoS (amino acid residues 1-234, ExoS(1-234)), which does not possess ADP-ribosyltransferase activity, stimulates cell rounding when transfected or microinjected into eukaryotic cells. Here we studied the effects of ExoS(1-234) on nucleotide binding and hydrolysis by Rho GTPases. ExoS(1-234) (100-500 nM) did not influence nucleotide exchange of Rho, Rac, and Cdc42 but increased GTP hydrolysis. A similar increase in GTPase activity was stimulated by full-length ExoS. Half-maximal stimulation of GTP hydrolysis by Rho, Rac, and Cdc42 was observed at 10-11 nM ExoS(1-234), respectively. We identified arginine 146 of ExoS to be essential for the stimulation of GTPase activity of Rho proteins. These data identify ExoS as a GTPase-activating protein for Rho GTPases.  相似文献   

12.
The small GTPases of the Rho family play a key role in actin cytoskeletal organization. In plants, a novel Rho subfamily, called ROP (Rho of plants), has been found. In Arabidopsis, 12 ROP GTPases have been identified which differ mainly at their C-termini. To test the localization of two members of this subfamily (AtROP4 and AtROP6), we have generated translational fusions with the green fluorescent protein (GFP). Microscopic analysis of transiently transfected BY2 cells revealed a predominant localization of AtROP4 in the perinuclear region, while AtROP6 was localized almost exclusively to the plasma membrane. Swapping of the AtROP4 and AtROP6 C-termini produced a change in localization. As RhoGDIs are known to bind to the C-terminus of GTPases of the Rho family, we searched for ArabidopsisRhoGDI genes. We identified the AtRhoGDI1gene and mapped it to chromosome 3. AtRhoGDI1 encodes a 22.5 kDa protein which contains highly conserved amino acids in the isoprene binding pocket and exhibits 29% to 37% similarity to known mammalian RhoGDI homologues. The AtRhoGDI1 gene was expressed in all tissues studied. Using the yeast two-hybrid system, we showed specific interaction of AtRhoGDI1 with both AtROP4 and AtROP6 as well as with their GTP-locked mutants, but not with a GTPase of the RAB family. Recombinant GST-AtRhoGDI1 could bind GFP-AtROP4 from transgenic tobacco BY2 cell extracts, confirming the interaction observed with the two-hybrid system.these authors contributed equally to the work  相似文献   

13.
Most eukaryotic cells are polarized. Common toolbox regulating cell polarization includes Rho guanosine triphosphatases (GTPases), in which spatiotemporal activation is regulated by a plethora of regulators. Rho of plants (ROPs) are the only Rho GTPases in plants. Although vesicular trafficking was hinted in the regulation of ROPs, it was unclear where vesicle‐carried ROP starts, whether it is dynamically regulated, and which components participate in vesicle‐mediated ROP targeting. In addition, although vesicle trafficking and guanine nucleotide inhibitor (GDI) pathways in Rho signaling have been extensively studied in yeast, it is unknown whether the two pathways interplay. Unclear are also cellular and developmental consequences of their interaction in multicellular organisms. Here, we show that the dynamic targeting of ROP through vesicles requires coat protein complex II and ADP‐ribosylation factor 1‐mediated post‐Golgi trafficking. Trafficking of vesicle‐carried ROPs between the plasma membrane and the trans‐Golgi network is mediated through adaptor protein 1 and sterol‐mediated endocytosis. Finally, we show that GDI and vesicle trafficking synergistically regulate cell polarization and ROP targeting, suggesting that the establishment and maintenance of cell polarity is regulated by an evolutionarily conserved mechanism.  相似文献   

14.
The physiological effects of anesthetics have been ascribed to their interaction with hydrophobic sites within functionally relevant CNS proteins. Studies have shown that volatile anesthetics compete for luciferin binding to the hydrophobic substrate binding site within firefly luciferase and inhibit its activity (Franks, N. P., and Lieb, W. R. (1984) Nature 310, 599-601). To assess whether anesthetics also compete for ligand binding to a mammalian signal transduction protein, we investigated the interaction of the volatile anesthetic, halothane, with the Rho GDP dissociation inhibitor (RhoGDIalpha), which binds the geranylgeranyl moiety of GDP-bound Rho GTPases. Consistent with the existence of a discrete halothane binding site, the intrinsic tryptophan fluorescence of RhoGDIalpha was quenched by halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) in a saturable, concentration-dependent manner. Bromine quenching of tryptophan fluorescence is short-range and W192 and W194 of the RhoGDIalpha are located within the geranylgeranyl binding pocket, suggesting that halothane binds within this region. Supporting this, N-acetyl-geranylgeranyl cysteine reversed tryptophan quenching by halothane. Short chain n-alcohols ( n < 6) also reversed tryptophan quenching, suggesting that RhoGDIalpha may also bind n-alkanols. Consistent with this, E193 was photolabeled by 3-azibutanol. This residue is located in the vicinity of, but outside, the geranylgeranyl chain binding pocket, suggesting that the alcohol binding site is distinct from that occupied by halothane. Supporting this, N-acetyl-geranylgeranyl cysteine enhanced E193 photolabeling by 3-azibutanol. Overall, the results suggest that halothane binds to a site within the geranylgeranyl chain binding pocket of RhoGDIalpha, whereas alcohols bind to a distal site that interacts allosterically with this pocket.  相似文献   

15.
Tumor cells exhibit two interconvertible modes of cell motility referred to as mesenchymal and amoeboid migration. Mesenchymal mode is characterized by elongated morphology that requires high GTPase Rac activation, whereas amoeboid mode is dependent on actomyosin contractility induced by Rho/Rho-associated protein kinase (ROCK) signaling. While elongated morphology is driven by Rac-induced protrusion at the leading edge, how Rho/ROCK signaling controls amoeboid movement is not well understood. We identified FilGAP, a Rac GTPase-activating protein (GAP), as a mediator of Rho/ROCK-dependent amoeboid movement of carcinoma cells. We show that depletion of endogenous FilGAP in carcinoma cells induced highly elongated mesenchymal morphology. Conversely, forced expression of FilGAP induced a round/amoeboid morphology that requires Rho/ROCK-dependent phosphorylation of FilGAP. Moreover, depletion of FilGAP impaired breast cancer cell invasion through extracellular matrices and reduced tumor cell extravasation in vivo. Thus phosphorylation of FilGAP by ROCK appears to promote amoeboid morphology of carcinoma cells, and FilGAP contributes to tumor invasion.  相似文献   

16.
Hutchinson JP  Eccleston JF 《Biochemistry》2000,39(37):11348-11359
Guanine nucleotide dissociation stimulator (GDS) promotes the release of tightly bound GDP from various Ras superfamily proteins, including RhoA, Rac1, K-Ras, Rap1A, and Rap1B. It displays no significant sequence homology to other known exchange factors for small G-proteins. Studies are reported here of the mechanism of GDS-mediated nucleotide release from RhoA using a combination of equilibrium and stopped-flow kinetic measurements, employing fluorescent N-methylanthraniloyl (mant) derivatives of GDP and 2'-deoxyGDP. It is proposed that GDS operates by an associative displacement mechanism where stimulated nucleotide release from the Rho.mantGDP complex occurs via a transiently populated ternary complex (Rho.GDS.mantGDP). In kinetic experiments where excess GDS was mixed with the Rho.mantGDP complex, stimulated mantGDP dissociation rates of 1 s(-)(1) were measured during a single turnover, representing a 5000-fold enhancement over the intrinsic rate of mantGDP dissociation from Rho. The stable, nucleotide-free binary complex Rho.GDS was isolated. When the Rho.GDS complex was mixed with excess mantGDP, a biphasic increase in fluorescence occurred, the observed rate constants of which both reached saturating values at high mantGDP concentrations. This is compelling evidence that an isomerization of the Rho.GDS.mantGDP ternary complex is an important feature of the mechanism of nucleotide release.  相似文献   

17.
Purkinje cell protein-2 (PCP-2; L7/GPSM4) is a GoLoco motif-containing protein that is specifically expressed in Purkinje and retinal ON bipolar cells. An alternative splice variant of PCP-2 has recently been isolated which contains two GoLoco motifs. Although the second GoLoco motif (GL2) of PCP-2 has been reported to interact with Galpha-subunits, a complete biochemical analysis of each individual motif of PCP-2 has not been performed. We demonstrate that the first GoLoco motif (GL1) of PCP-2 is equipotent as a guanine nucleotide dissociation inhibitor (GDI) towards Galphai1 and Galphai2, while it has sevenfold lower GDI activity for Galphai3 and greater than 20-fold lower GDI activity against Galphao. In contrast we found PCP-2 GL2 to be essentially equipotent as a GDI for all Galphai subunits, but it had negligible activity toward Galphao. Using co-immunoprecipitation from COS-7 cells, we found that PCP-2 was only able to interact with Galphai1 but not Galphao nor Galpha-subunits from other families (Galphas, Galphaq, or Galpha12). Mutational analysis of a non-canonical residue (glycine 24) in human PCP-2 GL1 provided evidence for heterogeneity in mechanisms of Galphai interactions with GoLoco motifs. Collectively, the data demonstrate that PCP-2 is a comparatively weak GoLoco motif protein that exhibits highest affinity interactions and GDI activity toward Galphai1, Galphai2, and Galphai3 subunits.  相似文献   

18.
Rho GTPases are Ras-related GTPases that regulate a variety of cellular processes. In the sea urchin Strongylocentrotus purpuratus, RhoA in the oocyte associates with the membrane of the cortical granules and directs their movement from the cytoplasm to the cell cortex during maturation to an egg. RhoA also plays an important role regulating the Na(+) -H(+) exchanger activity, which determines the internal pH of the cell during the first minutes of embryogenesis. We investigated how this activity may be regulated by a guanine-nucleotide dissociation inhibitor (RhoGDI). The sequence of this RhoA regulatory protein was identified in the genome on the basis of its similarity to other RhoGDI species, especially for key segments in the formation of the isoprenyl-binding pocket and in interactions with the Rho GTPase. We examined the expression and the subcellular localization of RhoGDI during oogenesis and in different developmental stages. We found that RhoGDI mRNA levels were high in eggs and during cleavage divisions until blastula, when it disappeared, only to reappear in gastrula stage. RhoGDI localization overlaps the presence of RhoA during oogenesis and in embryonic development, reinforcing the regulatory premise of the interaction. By use of recombinant protein interactions in vitro, we also find that these two proteins selectively interact. These results support the hypothesis of a functional relationship in vivo and now enable mechanistic insight for the cellular and organelle rearrangements that occur during oogenesis and embryonic development.  相似文献   

19.
Fyn, a member of the Src family of tyrosine kinases, is implicated in both brain development and adult brain function. In the present study, we identified a Rho GTPase-activating protein (GAP), TCGAP (Tc10/Cdc42 GTPase-activating protein), as a novel Fyn substrate. TCGAP interacted with Fyn and was phosphorylated by Fyn, with Tyr-406 in the GAP domain as a major Fyn-mediated phosphorylation site. Fyn suppressed the GAP activity of wild-type TCGAP but not the Y406F mutant of TCGAP in a phosphorylation-dependent manner, suggesting that Fyn-mediated Tyr-406 phosphorylation negatively regulated the TCGAP activity. In situ hybridization analyses showed that TCGAP mRNA was expressed prominently in both immature and adult mouse brain, with high levels in cortex, corpus striatum, hippocampus, and olfactory bulb. Overexpression of wild-type TCGAP in PC12 cells suppressed nerve growth factor-induced neurite outgrowth, whereas a GAP-defective mutant of TCGAP enhanced the neurite outgrowth. Nerve growth factor enhanced tyrosine phosphorylation of TCGAP through activation of Src family kinases. These results suggest that TCGAP is involved in Fyn-mediated regulation of axon and dendrite outgrowth.  相似文献   

20.
Thiede B  Siejak F  Dimmler C  Rudel T 《Proteomics》2002,2(8):996-1006
Jurkat T cells induced to undergo apoptosis by the CD95(Fas/Apo-1) pathway were investigated by proteome analysis. The most prominent differing protein spots of apoptotic and nonapoptotic cells were identified as various heterogeneous ribonuclear proteins (hnRNPs) and Rho guanin nucleotide dissociation inhibitor (GDI) 2. In apoptotic cells, four spots slightly differing in molecular mass and/or isoelectric point were identified as Rho GDI 2 with the mass and pI as expected after caspase-3 cleavage near the N-terminus. Subcellular proteome analysis revealed that Rho GDI 2 was highly enriched in the cytosolic fraction, present in minor amounts in the nuclear fraction and absent from the mitochondrial fraction. In apoptotic cells however, the spots representing processed and modified Rho GDI 2 were found in the cytosol, in the nucleus and also the mitochondria at different spot positions. In addition, twelve different hnRNPs were identified to be altered after induction of cell death of which hnRNPs A/B, D, F, H, I and L were hitherto unknown to be modified during apoptosis. Most of the hnRNP spots were found in the nucleus of nonapoptotic cells, whereas these proteins, either modified or unmodified, relocated to the cytosol and/or the mitochondria in apoptotic cells. Our results demonstrate that modification of proteins during apoptosis is often accompanied by their relocalisation between cellular compartments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号