共查询到20条相似文献,搜索用时 0 毫秒
1.
Many RNAs, including the ribosome, RNase P, and the group II intron, explicitly require monovalent cations for activity in vitro. Although the necessity of monovalent cations for RNA function has been known for more than a quarter of a century, the characterization of specific monovalent metal sites within large RNAs has been elusive. Here we describe a biochemical approach to identify functionally important monovalent cations in nucleic acids. This method uses thallium (Tl+), a soft Lewis acid heavy metal cation with chemical properties similar to those of the physiological alkaline earth metal potassium (K+). Nucleotide analog interference mapping (NAIM) with the sulfur-substituted nucleotide 6-thioguanosine in combination with selective metal rescue of the interference with Tl+ provides a distinct biochemical signature for monovalent metal ion binding. This approach has identified a K+ binding site within the P4-P6 domain of the Tetrahymena group I intron that is also present within the X-ray crystal structure. The technique also predicted a similar binding site within the Azoarcus group I intron where the structure is not known. The approach is applicable to any RNA molecule that can be transcribed in vitro and whose function can be assayed. 相似文献
2.
Many enzymes use metal ions within their active sites to achieve enormous rate acceleration. Understanding how metal ions mediate catalysis requires elucidation of metal ion interactions with both the enzyme and the substrate(s). The three-dimensional arrangement determined by X-ray crystallography provides a powerful starting point for identifying ground state interactions, but only functional studies can establish and interrogate transition state interactions. The Tetrahymena group I ribozyme is a paradigm for the study of RNA catalysis, and previous work using atomic mutagenesis and quantitative analysis of metal ion rescue behavior identified catalytic metal ions making five contacts with the substrate atoms. Here, we have combined atomic mutagenesis with site-specific phosphorothioate substitutions in the ribozyme backbone to establish transition state ligands on the ribozyme for one of the catalytic metal ions, referred to as M A. We identified the pro-S P oxygen atoms at nucleotides C208, A304, and A306 as ground state ligands for M A, verifying interactions suggested by the Azoarcus crystal structures. We further established that these interactions are present in the chemical transition state, a conclusion that requires functional studies, such as those carried out herein. Elucidating these active site connections is a crucial step toward an in-depth understanding of how specific structural features of the group I intron lead to catalysis. 相似文献
3.
Cations play an important role in RNA folding and stabilization. The hairpin ribozyme is a small catalytic RNA consisting of two domains, A and B, which interact in the transition state in an ion-dependent fashion. Here we describe the interaction of mono-, di-, and trivalent cations with the domains of the ribozyme, as studied by homo- and heteronuclear NMR spectroscopy. Paramagnetic line broadening, chemical shift mapping, and intermolecular NOEs indicate that the B domain contains four to five metal binding sites, which bind Mn(2+), Mg(2+), and Co(NH(3))(6)(3+). There is no significant structural change in the B domain upon the addition of Co(NH(3))(6)(3+) or Mg(2+). No specific monovalent ion binding sites exist on the B domain, as determined by (15)NH(4)(+) binding studies. In contrast to the B domain, there are no observable metal ion interactions within the internal loop of the A domain. Model structure calculations of Mn(2+) interactions at two sites within the B domain indicate that the binding sites comprise major groove pockets lined with functional groups oriented so that multiple hydrogen bonds can be formed between the RNA and Mn(H(2)O)(6)(2+) or Co(NH(3))(6)(3+). Site 1 is very similar in geometry to a site within the P4-P6 domain of the Tetrahymena group I intron, while site 2 is unique among known ion binding sites. The site 2 ion interacts with a catalytically essential nucleotide and bridges two phosphates. Due to its location and geometry, this ion may play an important role in the docking of the A and B domains. 相似文献
4.
Interactions with divalent metal ions are essential for the folding and function of the catalytic RNA component of the tRNA processing enzyme ribonuclease P (RNase P RNA). However, the number and location of specific metal ion interactions in this large, highly structured RNA are poorly understood. Using atomic mutagenesis and quantitative analysis of thiophilic metal ion rescue we provide evidence for metal ion interactions at the pro-R(P) and pro-S(P) non-bridging phosphate oxygens at nucleotide A67 in the universally conserved helix P4. Moreover, second-site modifications within helix P4 and the adjacent single stranded region (J3/4) provide the first evidence for metal ion interactions with nucleotide base functional groups in RNase P RNA and reveal the presence of an additional metal ion important for catalytic function. Together, these data are consistent with a cluster of metal ion interactions in the P1-P4 multi-helix junction that defines the catalytic core of the RNase P ribozyme. 相似文献
5.
Grigorios A. Papadakos Horacio Nastri Paul Riggs Cynthia M. Dupureur 《Journal of biological inorganic chemistry》2007,12(4):557-569
The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function. 相似文献
6.
7.
Metal binding at the activating site of rabbit muscle phosphoglucomutase has been studied by 31P, 7Li, and 113Cd NMR spectroscopy. A 7Li NMR signal of the binary Li+ complex of the phosphoenzyme was not observed probably because of rapid transverse relaxation of the bound ion due to chemical exchange with free Li+. The phosphoenzyme-Li+-glucose 6-phosphate ternary complex is more stable, kinetically, and yields a well-resolved peak from bound Li+ at -0.24 ppm from LiCl with a line width of 5 Hz and a T1 relaxation time of 0.51 +/- 0.07 s at 78 MHz. When glucose 1-phosphate was bound, instead, the chemical shift of bound 7Li+ was -0.13 ppm; and in the Li+ complex of the dephosphoenzyme and glucose bisphosphate a partially broadened 7Li+ peak appeared at -0.08 ppm. Thus, the bound metal ion has a somewhat different environment in each of these three ternary complexes. The 113Cd NMR signal of the binary Cd2+ complex of the phosphoenzyme appears at 22 ppm relative to Cd(ClO4)2 with a line width of 20 Hz at 44.4 MHz. Binding of substrate and formation of the Cd2+ complex of the dephosphoenzyme and glucose bisphosphate broaden the 113Cd NMR signal to 70 Hz and shift it to 75 ppm. The 53 ppm downfield shift upon the addition of substrate along with 1H NMR data suggests that one oxygen ligand to Cd2+ in the binary complex is replaced by a nitrogen ligand at some intermediate point in the enzymic reaction.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
8.
9.
Lagerström MC Klovins J Fredriksson R Fridmanis D Haitina T Ling MK Berglund MM Schiöth HB 《The Journal of biological chemistry》2003,278(51):51521-51526
We created a molecular model of the human melanocortin 4 receptor (MC4R) and introduced a series of His residues into the receptor protein to form metal ion binding sites. We were able to insert micromolar affinity binding sites for zinc between transmembrane region (TM) 2 and TM3 where the metal ion alone was able to activate this peptide binding G-protein-coupled receptor. The exact conformation of the metal ion interactions allowed us to predict the orientation of the helices, and remodeling of the receptor protein indicated that Glu100 and Ile104 in TM2 and Asp122 and Ile125 in TM3 are directed toward a putative area of activation of the receptor. The molecular model suggests that a rotation of TM3 may be important for activation of the MC4R. Previous models of G-protein-coupled receptors have suggested that unlocking of a stabilizing interaction between the DRY motif, in the cytosolic part of TM3, and TM6 is important for the activation process. We suggest that this unlocking process may be facilitated through creation of a new interaction between TM3 and TM2 in the MC4R. 相似文献
10.
11.
Prior studies of the metal ion dependence of the self-cleavage reaction of the HDV genomic ribozyme led to a mechanistic framework in which the ribozyme can self-cleave by multiple Mg2+ ion-independent and -dependent channels [Nakano et al. (2001) Biochemistry 40, 12022]. In particular, channel 2 involves cleavage in the presence of a structural Mg2+ ion without participation of a catalytic divalent metal ion, while channel 3 involves both structural and catalytic Mg2+ ions. In the present study, experiments were performed to probe the nature of the various divalent ion sites and any specificity for Mg2+. A series of alkaline earth metal ions was tested for the ability to catalyze self-cleavage of the ribozyme under conditions that favor either channel 2 or channel 3. Under conditions that populate primarily channel 3, nearly identical K(d)s were obtained for Mg2+, Ca2+, Ba2+, and Sr2+, with a slight discrimination against Ca2+. In contrast, under conditions that populate primarily channel 2, tighter binding was observed as ion size decreases. Moreover, [Co(NH3)6]3+ was found to be a strong competitive inhibitor of Mg2+ for channel 3 but not for channel 2. The thermal unfolding of the cleaved ribozyme was also examined, and two transitions were found. Urea-dependent studies gave m-values that allowed the lower temperature transition to be assigned to tertiary structure unfolding. The effects of high concentrations of Na+ on the melting temperature for RNA unfolding and the reaction rate revealed ion binding to the folded RNA, with significant competition of Na+ (Hill coefficient of 1.5-1.7) for a structural Mg2+ ion and an unusually high intrinsic affinity of the structural ion for the RNA. Taken together, these data support the existence of two different classes of metal ion sites on the ribozyme: a structural site that is inner sphere with a major electrostatic component and a preference for Mg2+, and a weak catalytic site that is outer sphere with little preference for a particular divalent ion. 相似文献
12.
Four crystal structures of EcoRV endonuclease mutants K92A and K38A provide new insight into the mechanism of DNA bending and the structural basis for metal-dependent phosphodiester bond cleavage. The removal of a key active site positive charge in the uncleaved K92A-DNA-M(2+) substrate complex results in binding of a sodium ion in the position of the amine nitrogen, suggesting a key role for a positive charge at this position in stabilizing the sharp DNA bend prior to cleavage. By contrast, two structures of K38A cocrystallized with DNA and Mn(2+) ions in different lattice environments reveal cleaved product complexes featuring a common, novel conformation of the scissile phosphate group as compared to all previous EcoRV structures. In these structures, the released 5'-phosphate and 3'-OH groups remain in close juxtaposition with each other and with two Mn(2+) ions that bridge the conserved active site carboxylates. The scissile phosphates are found midway between their positions in the prereactive substrate and postreactive product complexes of the wild-type enzyme. Mn(2+) ions occupy two of the three sites previously described in the prereactive complexes and are plausibly positioned to generate the nucleophilic hydroxide ion, to compensate for the incipient additional negative charge in the transition state, and to ionize a second water for protonation of the 3'-oxyanion. Reconciliation of these findings with earlier X-ray and fluorescence studies suggests a novel mechanism in which a single initially bound metal ion in a third distinct site undergoes a shift in position together with movement of the scissile phosphate deeper into the active site cleft. This reconfigures the local environment to permit binding of the second metal ion followed by movement toward the pentacovalent transition state. The new mechanism suggested here embodies key features of previously proposed two- and three-metal catalytic models, and offers a view of the stereochemical pathway that integrates much of the copious structural and functional data that are available from exhaustive studies in many laboratories. 相似文献
13.
14.
R L Tellam 《Archives of biochemistry and biophysics》1991,288(1):185-191
Spectroscopically active terbium ions have been used to probe the Ca2+ ion-binding sites on human plasma gelsolin. The luminescence of Tb3+ ions bound to gelsolin is markedly enhanced when excited indirectly at 295 nm due to F?rster type dipole-dipole energy transfer from neighboring tryptophan residues. Titration of this luminescence with increasing concentrations of Tb3+ ions was saturable although the shape of this titration curve was complex indicating the involvement of multiple classes of sites. Luminescence lifetime measurements (obtained by indirect excitation at 295 nm) demonstrate the presence of two classes of sites characterized by a major lifetime of 1.0-1.1 ms and a minor lifetime of 0.7-0.8 ms. However, while the amplitude of the minor lifetime showed a hyperbolic dependence on the Tb3+ ion concentration, the amplitude of the major lifetime showed a strongly sigmoidal dependence. Different classes of Tb3+ ion binding sites can also be distinguished by the different Ca2+ ion concentrations needed to displace Tb3+ ions from these sites on gelsolin. It is proposed that the occupancy of one class of Tb3+ ion binding sites on gelsolin causes a conformational change in gelsolin which then allows a second class of cryptic Tb3+ ion binding sites to be expressed. The implications of these results in terms of the binding of Ca2+ ions to gelsolin and the regulation of the activities of gelsolin by calcium are discussed. 相似文献
15.
Simona Bartova Maria Pechlaner Daniela Donghi Roland K. O. Sigel 《Journal of biological inorganic chemistry》2016,21(3):319-328
Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped 1H, 15N, 13C, and 31P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5′-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be. 相似文献
16.
Nucleic acid quadruplexes are composed of guanine quartets stabilized by specific metal ions. X-ray diffraction can provide high-resolution information on the structure and metal binding properties of quadruplexes, but only if they can be crystallized. NMR can provide detailed information on the solution structure of such quadruplexes but little quantitative data concerning the metal binding site. Here we apply extended X-ray absorption fine structure (EXAFS) measurements to characterize the metal ion binding site, in frozen solution, of the unimolecular quadruplex formed by the thrombin binding aptamer, d(G(2)T(2)G(2)TGTG(2)T(2)G(2)) (TBA), in the presence of Pb(2+) ions. The Pb L(III) -edge X-ray absorption spectrum of this metal-DNA complex is very similar to that we obtain for a Pb(2+)-stabilized quartet system of known structure constructed from a modified guanine nucleoside (G1). The Fourier transforms of the Pb(2+) complexes with both TBA and G1 show a first-shell interaction at about 2.6 A, and a weaker, broader shell at 3.5-4.0 A. Quantitative analysis of the EXAFS data reveals the following: (i) very close agreement between interatomic distances at the metal coordination site for the Pb(2+)-G1 complex determined by EXAFS and by X-ray crystallography; (ii) similarly close agreement between interatomic distances measured by EXAFS for the Pb(2+)-G1 and Pb(2+)-TBA complexes. These results provide strong evidence for binding of the Pb(2+) ion in the region between the two quartets in the Pb(2+)-TBA complex, coordinated to the eight surrounding guanine O6 atoms. The specific binding of Pb(2+) to DNA examined here may be relevant to the genotoxic effects of this environmentally important heavy metal. Furthermore, these results demonstrate the utility of EXAFS as a method for quantitative characterization of specific metal binding sites in nucleic acids in solution. 相似文献
17.
The hepatitis C virus nonstructural 5B protein (NS5B) protein has been shown to require either magnesium or manganese for its RNA-dependent RNA polymerase activity. As a first step toward elucidating the nature and the role(s) of the metal ions in the reaction chemistry, we have utilized endogenous tryptophan fluorescence to quantitate the interactions of magnesium and manganese ions with this protein. The association of either Mg(2+) or Mn(2+) ions with the enzyme resulted in a decrease in the intensity of the tryptophan emission spectrum. This decrease was used to determine the apparent dissociation constants for both ions. The apparent K(d) values for the binding of Mg(2+) and Mn(2+) ions to the free enzyme were 3.1 and 0.3 mm, respectively. Dual ligand titration experiments demonstrated that both ions bind to a single common site, for which they compete. The kinetics of real time metal ion binding to the NS5B protein were also investigated. Based on the results of our fluorescence and near-UV circular dichroism experiments, we show that NS5B undergoes conformational changes upon the binding of metal ions. However, this process does not significantly stimulate the binding to the RNA or NTP substrates. We envisage that the ion-induced conformational change is a prerequisite for catalytic activity by both correctly positioning the side chains of the residues located in the active site of the enzyme and also contributing to the stabilization of the intermediate transition state. 相似文献
18.
Ashok Sharma Sudeep Roy Kumar Parijat Tripathi Pratibha Roy Manoj Mishra Feroz Khan Abha Meena 《Bioinformation》2009,4(2):66-70
Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to
design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite
amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP''s). Earlier work on MAP''s have shown
that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow
in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in
each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt
and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the
surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective
phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications
would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used
to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain. 相似文献
19.
Metal ions facilitate the folding of the hairpin ribozyme but do not participate directly in catalysis. The metal complex cobalt(III) hexaammine supports folding and activity of the ribozyme and also mediates specific internucleotide photocrosslinks, several of which retain catalytic ability. These crosslinks imply that the active core structure organized by [Co(NH3)6]3+ is different from that organized by Mg2+ and that revealed in the crystal structure [Rupert, P. B., and Ferre-D'Amare, A. R. (2001) Nature 410, 780-786] (1). Residues U+2 and C+3 of the substrate, in particular, adopt different conformations in [Co(NH3)6]3+. U+2 is bulged out of loop A and stacked on residue G36, whereas the nucleotide at position +3 is stacked on G8, a nucleobase crucial for catalysis. Cleavage kinetics performed with +2 variants and a C+3 U variant correlate with the crosslinking observations. Variants that decreased cleavage rates in magnesium up to 70-fold showed only subtle decreases or even increases in observed rates when assayed in [Co(NH3)6]3+. Here, we propose a model of the [Co(NH3)6]3+-mediated catalytic core generated by MC-SYM that is consistent with these data. 相似文献
20.
Quantitative aspects of metal ion binding to certain transfer RNA anticodon loop modified nucleosides 总被引:1,自引:0,他引:1
M P Schweizer N De M Pulsipher M Brown P R Reddy C R Petrie G B Chheda 《Biochimica et biophysica acta》1984,802(2):352-361
Magnesium and manganese ions bind strongly to the unusual transfer RNA anticodon loop nucleotides, N-[(9-beta-D-ribofuranosyl-9H-purin-6-yl)carbamoyl]-L-threonine 5'-monophosphate (pt6A) and uridine-5-oxyacetic acid 5'-monophosphate (pV). Potentiometric measurements have shown that the delta G for metal ion-pt6A complex formation is 2-3-times more exothermic than for AMP. Electron-nuclear longitudinal dipolar relaxation data yielded manganese-ligand atom distances which permit a three-dimensional construct of the complex in which metal is coordinated to the phosphate, carboxylate of the threonine side-chain (with the nucleotide in the anti glycosidic conformation) and N7 of the adenine ring. Similarly, manganese binds strongly to pV, involving phosphate and carboxylate functions. It is possible that a facet of the functional role of these unusual residues is to chelate magnesium ions and in so doing permit optimum anticodon loop conformational stability and stability of tRNA-mRNA-ribosome complexes. 相似文献