共查询到20条相似文献,搜索用时 15 毫秒
1.
David Berrigan Ary A. Hoffmann 《Biological journal of the Linnean Society. Linnean Society of London》1998,64(4):449-462
Associations between traits may differ at the interspecific and intraspecific levels, making it difficult to predict long term evolutionary constraints. In this study we used replicate hybrid lines generated from crosses between Drosophila serrata and D. birchii to investigate correlations between measures of heat resistance and acclimation responses. Within each species, knockdown heat resistance was uncorrelated with heat resistance as measured by mortality. In contrast, D. serrata was more resistant than D. birchii for both measures of heat resistance. Thus, inter- and intraspecific correlations between measures of heat resistance differ. In the hybrids, there was no evidence for a correlation between knockdown time and heat induced mortality. Hybrid data did suggest a trade-off between acclimation for knockdown heat resistance and heat resistance as measured by mortality. We argue that hybrids between species are a potentially useful tool for studying traits such as acclimation responses that show litde genetic variation within species. 相似文献
2.
Schiffer M Gilchrist AS Hoffmann AA 《Evolution; international journal of organic evolution》2006,60(1):106-114
Divergence among populations can occur via additive genetic effects and/or because of epistatic interactions among genes. Here we use line-cross analysis to compare the importance of epistasis in divergence among two sympatric Drosophila species from eastern Australia, one (D. serrata) distributed continuously and the other (D. birchii) confined to rainforest habitats that are often disjunct. For D. serrata, crosses indicated that development time and wing size differences were due to additive genetic effects, while for viability there were digenic epistatic effects. Crosses comparing geographically close populations as well as those involving the most geographically distant populations (including the southern species border) revealed epistatic interactions, whereas crosses at an intermediate distance showed no epistasis. In D. birchii, there was no evidence of epistasis for viability, although for development time and wing size there was epistasis in the cross between the most geographically diverged populations. Strong epistasis has not developed among the D. birchii populations, and this habitat specialist does not show stronger epistasis than D. serrata. Given that epistasis has been detected in crosses with other species from eastern Australia, including the recently introduced D. melanogaster, the results point to epistasis not being directly linked to divergence times among populations. 相似文献
3.
Heidi J. MacLean Torsten N. Kristensen Johannes Overgaard Jesper G. Sørensen Simon Bahrndorff 《Physiological Entomology》2017,42(4):404-411
Ecotherms adjust their physiology to environmental temperatures. Long‐term exposures to heat or cold typically induce acclimation responses that generate directional, but reversible shifts in thermal tolerance and performance. However, less is known about how short exposure in different life stages will affect the adult phenotype. In the present study, we compared the effects of long‐term temperature exposure to 15, 19 and 31 °C with that of brief (16 h) exposure periods at the same temperatures in Drosophila melanogaster eggs, larvae, pupae, or adults, respectively. The acclimation responses are evaluated using activity measurements at 11, 15, 19, 27, 31 and 33 °C and by measuring upper and lower thermal limits (CTmax and CTmin) in 5‐day‐old adult males. As expected, long‐term cold exposure reduces relative CTmin, whereas long‐term heat exposure increases relative CTmax. By contrast, we find little effect on thermal limits when using short‐term exposures at different life stages. Long‐term exposures to 31 and 15 °C both suppressed activity relative to the 19 °C control, suggesting that development at high and low temperatures may lead to reduced activity later in life. Short‐term cold exposure early in development reduces activity in the adult stage, whereas the effects of short‐term heat exposure on behaviour are dependent on life stage and test temperature. Together, our results highlight how the thermal sensitivity of the trait measured determines the ability to detect acclimation responses. 相似文献
4.
Geographical patterns for quantitative traits in Drosophila and other insects are commonly used to investigate climatic selection. They are usually determined from comparisons of populations over extensive areas and based on one collection per population. Here we consider patterns in the Australian endemic species Drosophila serrata established over a shorter transect with repeated sampling. Summer (prewinter) and spring (post-winter) collections were made from 10 to 14 localities, incorporating the southern border of D.serrata and extending approximately 1000 km northwards along the eastern coast of Australia. Linear or curvilinear associations with latitude were evident for development time, viability and cold resistance but patterns differed between collections. Some geographical (population) and genetic associations between traits were found and these also tended to differ between collections. Results confirm the importance of cold stress resistance over winter to the southern border of this species. Microsatellite markers were developed for D.serrata. These indicated a low level of genetic differentiation between populations, high levels of gene flow and no evidence that the most southerly populations were isolated. The results suggest that selection generated geographical patterns in cold resistance, development time and viability, and that substantial gene flow may prevent adaptation at the border to conditions beyond the current distribution of D. serrata. 相似文献
5.
Catherine Montchamp-Moreau G. Priquet D. Anxolabhre 《Journal of evolutionary biology》1991,4(1):131-140
Interspecific crosses were carried out between P element-transformed strains of D. simulans and a strain of D. mauritiana, a species devoid of this transposable element family. Four lines were established from hybrid females backcrossed with D. mauritiana males for four generations, and then maintained by intra-line mass mating. In situ hybridization of polytene chromosomes and southern blots showed that full-length and deleted P elements were present in all of the lines after 15 generations. We conclude that at least some of the P elements observed in two lines result from their transposition into D. mauritiana genome. Gonadal sterility, induced at 29°C in D. melanogaster by P elements also occurred with these two latter lines. 相似文献
6.
Although fragmented rainforest environments represent hotspots for invertebrate biodiversity, few genetic studies have been conducted on rainforest invertebrates. Thus, it is not known if invertebrate species in rainforests are highly genetically fragmented, with the potential for populations to show divergent selection responses, or if there are low levels of gene flow sufficient to maintain genetic homogeneity among fragmented populations. Here we use microsatellite markers and DNA sequences from the mitochondrial ND5 locus to investigate genetic differences among Drosophila birchii populations from tropical rainforests in Queensland, Australia. As found in a previous study, mitochondrial DNA diversity was low with no evidence for population differentiation among rainforest fragments. The pattern of mitochondrial haplotype variation was consistent with D. birchii having undergone substantial past population growth. Levels of nuclear genetic variation were high in all populations while F(ST) values were very low, even for flies from geographically isolated areas of rainforest. No significant differentiation was observed between populations on either side of the Burdekin Gap (a long-term dry corridor), although there was evidence for higher gene diversity in low-latitude populations. Spatial autocorrelation coefficients were low and did not differ significantly from random, except for one locus which revealed a clinal-like pattern. Comparisons of microsatellite differentiation contrasted with previously established clinal patterns in quantitative traits in D. birchii, and indicate that the patterns in quantitative traits are likely to be due to selection. These results suggest moderate gene flow in D. birchii over large distances. Limited population structure in this species appears to be due to recent range expansions or cycles of local extinctions followed by recolonizations/expansions. Nevertheless, patterns of local adaptation have developed in D. birchii that may result in populations showing different selection responses when faced with environmental change. 相似文献
7.
Nicole L. Jenkins Ary A. Hoffmann 《Evolution; international journal of organic evolution》1999,53(6):1823-1834
There are a number of evolutionary hypotheses about why species distributions are limited, but very little empirical information to test them. We present data examining whether the southern distribution of Drosophila serrata is limited by cold responses. Species comparisons were undertaken for cold resistance, development time, and viability at 15°C and 25°C for D. serrata and other species with a more southerly distribution (D. melanogaster, D. simulans, and D. immigrans). Relative to the other species, D. serrata had a long development time at both temperatures and a low level of cold resistance. Using isofemale lines collected in different seasons, central and marginal populations were compared for cold resistance, as well as development time and viability at 14°C. The border population had a relatively higher resistance to cold shock in postwinter collections, but there was no population differentiation for prewinter collections or for the other traits. The presence of variation among isofemale lines within the border populations suggests that genetic variation as measured in the laboratory is unlikely to limit range expansion. Population cages were used in the field to determine if D. serrata persisted over winter at borders. Although all cages yielded adult offspring at northern sites, only a few produced offspring at or just south of the border. In contrast, all cages with D. simulans produced adult offspring, suggesting that climatic factors limited D. serrata numbers. Offspring from surviving adults showed a phenotypic trade-off between fecundity and cold resistance. Comparisons of the cold resistance of field males and females with their laboratory-reared offspring provided evidence for heritable variation in field-reared flies. Overall, the results suggest that cold stress is important in limiting the southern distribution of D. serrata, but it seems unlikely that a lack of genetic variation restricts range expansion. 相似文献
8.
Geographic variation in wing shape in female Drosophila serrata was examined by characterizing isofemale strains from 19 localities collected along a transect on the eastern coast of Australia. Shape variation was analyzed by Procrustes superimposition of landmark data followed by canonical variate analysis. The first extracted canonical variate showed a nonlinear association with latitude and accounted for 43% of the variance. There was a sharp increase in this variate at low latitudes as well as a gradual increase at high latitudes. These shape changes were associated with two landmarks at the edge of the wing. There was also a linear change in wing aspect. The isofemale heritability for two measures of shape was around 30%. Allometric relationships were weak both between localities and among isofemale strains within localities. The possibility that wing shape parameters are under selection independent of wing size is discussed. 相似文献
9.
McGuigan K Petfield D Blows MW 《Evolution; international journal of organic evolution》2011,65(10):2816-2829
Mutation load is a key parameter in evolutionary theories, but relatively little empirical information exists on the mutation load of populations, or the elimination of this load through selection. We manipulated the opportunity for sexual selection within a mutation accumulation divergence experiment to determine how sexual selection on males affected the accumulation of mutations contributing to sexual and nonsexual fitness. Sexual selection prevented the accumulation of mutations affecting male mating success, the target trait, as well as reducing mutation load on productivity, a nonsexual fitness component. Mutational correlations between mating success and productivity (estimated in the absence of sexual selection) were positive. Sexual selection significantly reduced these fitness component correlations. Male mating success significantly diverged between sexual selection treatments, consistent with the fixation of genetic differences. However, the rank of the treatments was not consistent across assays, indicating that the mutational effects on mating success were conditional on biotic and abiotic context. Our experiment suggests that greater insight into the genetic targets of natural and sexual selection can be gained by focusing on mutational rather than standing genetic variation, and on the behavior of trait variances rather than means. 相似文献
10.
Yiguan Wang;Scott L. Allen;Adam J. Reddiex;Stephen F. Chenoweth; 《Molecular ecology》2024,33(18):e17499
This study explores the impact of positive selection on the genetic composition of a Drosophila serrata population in eastern Australia through a comprehensive analysis of 110 whole genome sequences. Utilizing an advanced deep learning algorithm (partialS/HIC) and a range of inferred demographic histories, we identified that approximately 14% of the genome is directly affected by sweeps, with soft sweeps being more prevalent (10.6%) than hard sweeps (2.1%), and partial sweeps being uncommon (1.3%). The algorithm demonstrated robustness to demographic assumptions in classifying complete sweeps but faced challenges in distinguishing neutral regions from partial sweeps and linked regions under demographic misspecification. The findings reveal the indirect influence of sweeps on nearly two-thirds of the genome through linkage, with an over-representation of putatively deleterious variants suggesting that positive selection drags deleterious variants to higher frequency due to hitchhiking with beneficial loci. Gene ontology enrichment analysis further supported our confidence in the accuracy of sweep detection as several traits expected to be under positive selection due to evolutionary arms races (e.g. immunity) were detected in hard sweeps. This study provides valuable insights into the direct and indirect contributions of positive selection in shaping genomic variation in natural populations. 相似文献
11.
We know very little about male mating preferences and how they influence the evolution of female traits. Theory predicts that males may benefit from choosing females on the basis of traits that indicate their fecundity. Here, we explore sexual selection generated by male choice on two components of female body size (wing length and body mass) in Drosophila serrata. Using a dietary manipulation to alter female size and 828 male mate choice trials, we analysed linear and nonlinear sexual selection gradients on female mass and wing length. In contrast to theoretical expectations and prevailing empirical data, males exerted stabilizing rather than directional sexual selection on female body mass, a correlate of fecundity. Sexual selection was detected only among females with access to standard resource levels as an adult, with no evidence for sexual selection among resource-depleted females. Thus the mating success of females with the same body mass differed depending upon their access to resources as an adult. This suggests that males in this species may rely on signal traits to assess body mass rather than assessing it directly. Stabilizing rather than directional sexual selection on body mass together with recent evidence for stabilizing sexual selection on candidate signal traits in this species suggests that females may trade-off resources allocated to reproduction and sexual signalling. 相似文献
12.
The maintenance of genetic variation in male sexual display traits in the face of strong directional sexual selection from female preferences is an ongoing evolutionary conundrum. Condition dependence and the genic capture hypothesis are often cited as theoretical resolutions to this problem, yet little is known about the ability of condition dependence itself to evolve. We set out to test how a suite of cuticular hydrocarbons (CHCs) used in sexual displays are affected by adult diet and the potential for any condition-dependent response to evolve in a laboratory-adapted population of the Australian fruit fly Drosophila serrata. We performed a dietary manipulation within a half-sib breeding design, raising adult males either with or without access to live yeast, a manipulation that had previously shown strong effects on female fitness. Diet had strong phenotypic effects, with males from the different diets producing different CHC blends. The blend of CHCs under sexual selection showed a degree of elevated condition dependence. Regardless of the heightened sensitivity of favoured CHC blends to diet and the presence of genetic variance for the traits, we were unable to detect any genetic variance in the reaction norms for the male dietary response. Our results suggest that there is limited opportunity for males to evolve further condition dependence in response to yeast availability in this population. 相似文献
13.
Katrina McGuigan Mark W. Blows 《Evolution; international journal of organic evolution》2013,67(4):1131-1142
Theoretical explanations of empirically observed standing genetic variation, mutation, and selection suggest that many alleles must jointly affect fitness and metric traits. However, there are few direct demonstrations of the nature and extent of these pleiotropic associations. We implemented a mutation accumulation (MA) divergence experimental design in Drosophila serrata to segregate genetic variants for fitness and metric traits. By exploiting naturally occurring MA line extinctions as a measure of line‐level total fitness, manipulating sexual selection, and measuring productivity we were able to demonstrate genetic covariance between fitness and standard metric traits, wing size, and shape. Larger size was associated with lower total fitness and male sexual fitness, but higher productivity. Multivariate wing shape traits, capturing major axes of wing shape variation among MA lines, evolved only in the absence of sexual selection, and to the greatest extent in lines that went extinct, indicating that mutations contributing wing shape variation also typically had deleterious effects on both total fitness and male sexual fitness. This pleiotropic covariance of metric traits with fitness will drive their evolution, and generate the appearance of selection on the metric traits even in the absence of a direct contribution to fitness. 相似文献
14.
The Drosophila serrata species complex from Australia and New Guinea has been widely used in evolutionary studies of speciation and climatic adaptation. It is believed to consist of D. serrata, D. birchii and D. dominicana, although knowledge of the latter is limited. Here we present evidence for a previously undescribed cryptic member of the D. serrata species complex. This new cryptic species is widespread in far north Queensland, Australia and is likely to have been previously mistaken for D. serrata. It shows complete reproductive isolation when crossed with both D. serrata and D. birchii. The cryptic species can be easily distinguished from D. serrata and D. birchii using either microsatellite loci or visual techniques. Although it occurs sympatrically with both D. serrata and D. birchii, it differs from these species in development time, viability, wing size and wing morphology. Its discovery explains patterns of recently described mitochondrial DNA divergence within D. serrata, and may also help to clarify some ambiguities evident in early evolutionary literature on reproductive incompatibility within the D. serrata species complex. 相似文献
15.
Jesper G. Sørensen Mads F. Schou Volker Loeschcke 《Evolution; international journal of organic evolution》2017,71(6):1627-1642
Mechanistic trade‐offs between traits under selection can shape and constrain evolutionary adaptation to environmental stressors. However, our knowledge of the quantitative and qualitative overlap in the molecular machinery among stress tolerance traits is highly restricted by the challenges of comparing and interpreting data between separate studies and laboratories, as well as to extrapolating between different levels of biological organization. We investigated the expression of the constitutive proteome (833 proteins) of 35 Drosophila melanogaster replicate populations artificially selected for increased resistance to six different environmental stressors. The evolved proteomes were significantly differentiated from replicated control lines. A targeted analysis of the constitutive proteomes revealed a regime‐specific selection response among heat‐shock proteins, which provides evidence that selection also adjusts the constitutive expression of these molecular chaperones. Although the selection response in some proteins was regime specific, the results were dominated by evidence for a “common stress response.” With the exception of high temperature survival, we found no evidence for negative correlations between environmental stress resistance traits, meaning that evolutionary adaptation is not constrained by mechanistic trade‐offs in regulation of functional important proteins. Instead, standing genetic variation and genetic trade‐offs outside regulatory domains likely constrain the evolutionary responses in natural populations. 相似文献
16.
Zani PA Cohnstaedt LW Corbin D Bradshaw WE Holzapfel CM 《Journal of evolutionary biology》2005,18(1):101-105
Because mortality accumulates with age, Fisher proposed that the strength of selection acting on survival should increase from birth up to the age of first reproduction. Hamilton later theorized that the strength of selection acting on survival should not change from birth to age at first reproduction. As organisms in nature do not live in uniform environments but, rather, experience periodic stress, we hypothesized that resistance to environmental stress should increase (Fisher) or remain constant (Hamilton) from birth to age at first reproduction. Using the pitcher-plant mosquito, Wyeomyia smithii, we imposed heat stress by simulating the passage of a warm-weather front at different pre-adult and adult stages. Contrary to either Fisher or Hamilton, stress tolerance declined from embryos to larvae to pupae to adults. Consequently, reproductive value appears to have been of little consequence in the evolution of stage-specific tolerance of heat stress in W. smithii. 相似文献
17.
Thomas P. Gosden Stephen F. Chenoweth 《Evolution; international journal of organic evolution》2014,68(6):1687-1697
Although knowledge of the selective agents behind the evolution of sexual dimorphism has advanced considerably in recent years, we still lack a clear understanding of the evolutionary durability of cross‐sex genetic covariances that often constrain its evolution. We tested the relative stability of cross‐sex genetic covariances for a suite of homologous contact pheromones of the fruit fly Drosophila serrata, along a latitudinal gradient where these traits have diverged in mean. Using a Bayesian framework, which allowed us to account for uncertainty in all parameter estimates, we compared divergence in the total amount and orientation of genetic variance across populations, finding divergence in orientation but not total variance. We then statistically compared orientation divergence of within‐sex ( G ) to cross‐sex ( B ) covariance matrices. In line with a previous theoretical prediction, we find that the cross‐sex covariance matrix, B , is more variable than either within‐sex G matrix. Decomposition of B matrices into their symmetrical and nonsymmetrical components revealed that instability is linked to the degree of asymmetry. We also find that the degree of asymmetry correlates with latitude suggesting a role for spatially varying natural selection in shaping genetic constraints on the evolution of sexual dimorphism. 相似文献
18.
Clinal variation in traits often reflects climatic adaptation; in Drosophila melanogaster clinal variation provides an opportunity to link variation in chromosomal inversions, microsatellite loci and various candidate genes to adaptive variation in traits. We undertook association studies with crosses from a single population of D. melanogaster from eastern Australia to investigate the association between genetic markers and traits showing clinal variation. By genotyping parents and phenotyping offspring, we minimized genotyping costs but had the power to detect association between markers and quantitative traits. Consistent with prior studies, we found strong associations between the clinal chromosomal inversion In(3R)Payne and markers within it, as well as among these markers. We also found an association between In(3L)Payne and one marker located within this inversion. Of the five predicted associations between markers and traits, four were detected (increased heat, decreased cold resistance and body size with the heat shock gene hsr-omega S, increased cold resistance with the inversion In(3L)Payne), while one was not detected (heat resistance and the heat shock gene hsp68). In a set of eight exploratory tests, we detected one positive association (between hsp23a and heat resistance) but no associations of heat resistance with alleles at the hsp26, hsp83, Desat 2, alpha-Gpdh, hsp70 loci, while cold resistance was not associated with Frost and Dca loci. These results confirm interactions between hsr-omega and thermal resistance, as well as between In(3L)Payne and cold resistance, but do not provide evidence for associations between thermal responses and alleles at other clinically varying marker genes. 相似文献
19.
Giovanna Flaim Ulrike Obertegger Andrea Anesi Graziano Guella 《Freshwater Biology》2014,59(5):985-997
- Life at low temperature imposes many constraints linked to sustaining cellular functions. The cold‐adapted freshwater dinoflagellate Peridinium aciculiferum has overcome these barriers, often causing blooms in winter but forming resting cysts in spring. Little is known of the biochemical changes that accompany this temperature‐induced transformation from vegetative cells to resting cysts.
- We investigated how the profiles of lipids and mycosporine‐like amino acids (MAAs) vary with temperature in vegetative cells and resting cysts of P. aciculiferum. The freshwater dinoflagellate was grown at four temperatures (2.7–7.7 °C), simulating the seasonal changes from winter to spring that also induce the transition from cells to cysts. Biochemical profiles were established by liquid chromatography/mass spectrometry with the simultaneous detection of polar and non‐polar compounds. Data were analysed by non‐metric multidimensional scaling and ANOVA.
- Over 100 species of galactolipids, betaine lipids, phospholipids and triacylglycerols (TAGs) were found, and many were strong biomarkers for specific temperatures and life stage. Variations in galactolipids, betaine lipids and phospholipids were unidirectional, as shown by an overall decrease in the unsaturation index with temperature. In contrast, changes in TAGs were specific to life stages: short‐chain TAGs (cumulative acyl length of 44–52 carbon atoms) decreased in cysts with respect to vegetative cells, while long‐chain TAGs (54–62) showed the opposite pattern. The concentration of MAAs decreased with increasing temperature. Final cell yield, a measure of population fitness, also decreased with increasing temperature, confirming the psychrophilic status of P. aciculiferum.
- We report the first detailed biochemical profiles of vegetative cells and resting cysts for a dinoflagellate and show how small‐scale temperature variations alter the biochemical make‐up within and between life stages, thus contributing to our understanding of seasonal succession of species.
20.
Resistance to thermal stress in preadult Drosophila buzzatii: variation among populations and changes in relative resistance across life stages 总被引:1,自引:0,他引:1
ROBERT A. KREBS VOLKER LOESCHCKE 《Biological journal of the Linnean Society. Linnean Society of London》1995,56(4):517-531
Resistance to a short term exposure to a high temperature stress was examined in eggs, larvae and pupae of Drosophila buzzfltii from seven localities. Across development, pupae were most resistant, followed by eggs, and then first and third-instar larvae. Variation among populations for resistance to heat stress was significant in all life stages. However, there was much less variation among populations where measured as eggs and pupae than for both first and third instar larvae. Older larvae showed large changes both in viability and developmental time, while exposure of young larvae to heat stress led to a decline in viability without delayed development. Populations that had the shortest developmental time at 25o C were relatively the most resistant to heat stress as larvae. High relative resistance at one preadult life stage was not necessarily associated with relatively high resistance at another, or with previous measurements of resistance for adults from these populations. Comparison of populations that were more similar in their pattern of change in resistance across development suggested a relationship with the climate of origin. The possibility that developmental variation in the expression of heat shock proteins may cause variation in resistance to thermal stress for different life stages is discussed. 相似文献