首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four different inversion heterozygotes of maize were examined for the occurrence of synaptic adjustment. Three substages of pachytene were identified in synaptonemal complex (SC) spreads using side-by-side comparisons of chromosome squashes with two-dimensional spreads of SCs. In SC spreads, inversion loop frequency did not change substantially from early through late pachytene for any of the four inversion heterozygotes examined. In addition, the position and size of the inversion loops remained essentially constant throughout pachytene. These results indicate that synaptic adjustment of inversion loops does not occur during pachytene in Zea mays.  相似文献   

2.
Electron microscopy of surface-spread spermatocytes from mice heterozygous for a tandem duplication shows the heteromorphic synaptonemal complex (SC) to comprise two lateral elements of unequal length, the longer of which is buckled out in a characteristic loop, representing the unsynapsed portion of the duplication. The loop is a regular feature of late zygotene-early pachytene nuclei; it is longest at these early stages, but, through equalization of the two axes as a consequence of synaptic adjustment, it is replaced by a normal appearing SC at late pachytene. Because equalization, as indicated by a decrease in the percent difference between axes, may begin shortly after completion of synapsis, estimates of duplication segment length are restricted to a sample selected for least adjustment. — Although the mean position of the loop is constant at various pachytene substages, individual positions vary widely from cell to cell, consistent with the behavior expected of a duplication, but not of a deletion or an inversion. The length of the segment that is duplicated is estimated to be 22% of the normal chromosome, the midpoint of the segment is mapped at 0.61 of the chromosome distal to the kinetochore, and the ends of the segment are mapped at 0.50 to 0.72. Measurements of G-banded mitotic chromosomes give comparable values: duplication length, 24%; midpoint, 0.60, and segment ends, 0.48 and 0.71. This agreement constitutes further validation of the SC/spreading method for detecting and analyzing chromosomal rearrangements at pachytene and substantiates the fidelity with which the axes and SCs represent the behavior of chromosomes in synapsis.  相似文献   

3.
Electron microscopic (EM) analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in chromosome 1 of the house mouse reveals that synapsis and synaptic adjustment are dependent on the size and location of the inversions and interaction between the latter. In(1)1Icg contains insertions of the inverted repeats Is(HSR;1C5)1Icg and Is(HSR;1D)2Icg and an inverted euchromatic region. Synaptic adjustment of the D-loops by shortening of the asynapsed segments of the lateral elements belonging to the insertions occurs at the late zytogene to early pachytene stage. Synaptic adjustment of the inversion loops takes place at early to late pachytene. A delay in adjustment was found in the double heterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. A correspondence between the lifespan of asynapsis in inverted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

4.
Two paracentric inversions in the mouse, In(1)1 Rk and In(2)5 Rk, have been studied in surface microspreads of spermatocytes from heterozygotes. At zytogene, synaptic initiation occurs independently in three regions: within the inversion, and without, on either side. Synaptonemal complex (SC) formation is restricted to homologous regions, resulting in inversion loops in all early pachytene spermatocytes. An adjusting phase then occurs during pachytene in which the inversion loop is reduced by desynapsis of homologously synapsed SC, followed immediately by non-homologous synapsis with the alternate pairing partner, progressing from the ends toward the middle. Adjustment occurs during the first half of pachytene, but is not closely synchronized with sub-stage. It is complete by late pachytene, the loop having been eliminated in all cases and replaced by straight SCs in which the inverted region is heterosynapsed. Synapsis in the adjustment phase is evidently permitted only after the homosynaptic phase, and is indifferent to homology. It may lead to heterosynapsis, as in the inversion region, or to synapsis of homologous regions not synapsed at zytogene. The anaphase bridge frequency, a measure of crossing over within the inversion, is about 34% for both inversions studied, indicating that such crossovers do not block adjustment, that crossing over probably occurs before or during the adjustment period, and that there is some crossover suppression. The last could be the consequence of blocking by desynapsis/heterosynapsis. Synaptic adjustment appears to be a general phenomenon that occurs to varying extents in different forms. A hypothetical scheme for two phases of synapsis is proposed: at zytogene, a basic propensity for indifferent SC formation is limited by a restricting condition to synapsis between homologous regions. Subsequently, the restriction is lifted, whereupon synaptic instability is resolved by desynapsis, followed by resynapsis that is indifferent to homology, but that results in a topologically more stable structure.  相似文献   

5.
At meiotic prophase the chromatin becomes arranged in loops on newly formed chromosome cores. The cores of homologous chromosomes become aligned in parallel and thus form the synaptonemal complex (SC), a structure found in the meiocytes of nearly all recombinationally competent, sexually reproducing organisms. We report that two polyclonal antibodies against topoisomerase II (topo II), which recognize the mitotic metaphase chromosome scaffold give, at pachytene, a positive immunocytological reaction with the chromatin and, predominantly, with the cores and centromeric regions of the paired chromosomes. It therefore appears that during meiotic prophase, topo II — a DNA-binding enzyme implicated in transient double-strand breaks, chromosome condensation, and anaphase separation — is associated with the chromatin and SCs of the pachytene and diplotene chromosomes.  相似文献   

6.
Synaptic Adjustment of Inversion Loops in Neurospora Crassa   总被引:1,自引:1,他引:0       下载免费PDF全文
M. Bojko 《Genetics》1990,124(3):593-598
Heterozygotes for three long inversions on chromosome 1 were analyzed by serial reconstruction from electron micrographs. Measurements of loop lengths at different meiotic prophase substages revealed that the homologous synapsis of the inverted region was gradually replaced by nonhomologous synapsis as loops were eliminated during pachytene. This synaptic adjustment was apparently not affected by crossovers which occurred within the 150- and 160-cM long loops.  相似文献   

7.
In a family in which a large pericentric inversion of chromosome 7 is segregating, two of the four progeny of inversion heterozygotes show severe psychomotor retardation and have the karyotype 46,XX,rec(7),dup q,inv(7)(p22q32), derived from crossing-over within the inversion. Meiotic analysis in one of the heterozygotes revealed no evidence of inversion loops in well-spread pachytene cells. In approximately 20% of cells in diakinesis, the presumptive bivalent 7 had only one chiasma. Two alternatives to the reversed loop mode of meiotic pairing of inversions are proposed. Review of the literature supports the view that "small" pericentric inversions have a much better genetic prognosis than "large" pericentric inversions.  相似文献   

8.
Electron microscopic analysis of synaptonemal complexes (SC) in single and double heterozygotes for the partially overlapping inversions In(1)1Icg, In(1)1Rk and In(1)12Rk in the Chromosome 1 of the house mouse reveals a dependence of synapsis and synaptic adjustment on the size and location of the inversions and their interaction. In(1)1Icg contains the insertions of inverted repeats Is(HSR: 1C5)1Icg and Is(HSR: 1I)2Icg as well as inverted euchromatic region. The synaptic adjustment of the D loops by shortening of asynapsed parts of the lateral elements of SC belonging to the insertions occurs at late zygotene-early pachytene stage. After that the synaptic adjustment of the inversion loops takes place. A delay in adjustment was found in diheterozygotes In(1)1Icg/In(1)1Rk and In(1)1Icg/In(1)12Rk. Morphological alterations of the asynapted terminal segments of lateral elements preventing synaptic adjustment were found in single and double heterozygotes for In(1)1Rk and In(1)12Rk. Correspondence between the size of asynapted regions and the probability of association of XY and heteromorphic bivalents was revealed.  相似文献   

9.
David W. Hale 《Chromosoma》1986,94(6):425-432
The patterns of chromosomal pairing and chiasma distribution were analyzed in male Sitka deer mice (Peromyscus sitkensis) polymorphic for terminally positioned pericentric inversions of chromosomes 6 and 7. Gand C-banding of somatic metaphases indicated that the inversions involved 30% and 40% of chromosomes 6 and 7, respectively. Analysis of silver-stained synaptonemal complexes in surface-spread zygotene and pachytene nuclei from heterozygous individuals revealed that inversion loops were not formed. The inverted segments proceeded directly to heterosynapsis without an intervening homosynaptic phase, and the heteromorphic bivalents remained straight-paired throughout pachynema. C-banded pachytene nuclei corroborated the occurrence of heterosynapsis, as the heteromorphic bivalents exhibited nonaligned centromeres. Analysis of diplonema and diakinesis indicated that crossing over had not occurred within the heterosynapsed inverted segments. The observation of chiasma suppression within the inversions indicates that pericentric inversion heterozygosity does not lead to the production of unbalanced gametes. Heterosynapsis of the inverted segments during zygonema and pachynema and the resulting chiasma suppression therefore represent a meiotic mechanism for the maintenance of pericentric inversion polymorphisms in this population of P. sitkensis.  相似文献   

10.
Ann C. Chandley 《Chromosoma》1982,85(1):127-135
Meiotic studies have been made at pachytene on two paracentric inversions in chromosome 1 of the mouse. Surface-spread preparations of primary spermatocytes have been analysed at the light microscope level in males heterozygous for the inversions In(1)1Rk and In(1)12Rk and in the double heterozygote In(1)1RK/In(1)12Rk. In singly heterozygous form, neither inversion produces any serious effect on male fertility. In the double heterozygote, spermatogenesis is arrested in the majority of cells at the spermatocyte stage and males are rendered totally sterile by azoospermia. In the double heterozygote, a complex loop, indicating the inversion bivalent, is found in 90% of pachytene cells analysed. In the In(1)1Rk/+ heterozygote, a looped bivalent was seen in 47 per cent of pachytene cells but in In(1)12Rk/+ no cells containing loops could be found. -80% of pachytene spermatocytes from the In(1)1Rk/In (1)12Rk double heterozygote showed apposition of the inversion bivalent to the sex bivalent. Such an association was rarely seen in pachytene cells of either of the fertile single heterozygotes. Spermatogenic failure in the double heterozygote may be related to interference, by the inversion bivalent, with X chromosome inactivation at meiotic prophase.  相似文献   

11.
A physical map including 40 translocation breakpoints has been constructed in rye by means of synaptonemal complex (SC) analysis of well-paired pachytene quadrivalents. The chromosome arms involved in such translocations were previously identified either from mitotic C-banding analysis or from the meiotic configurations observed in the progenies of crosses with a rye line having multiple chromosome rearrangements. The synaptonemal complexes formed by some translocation homozygotes were also analyzed, the relative pachytene SC length of their translocated chromosomes being compared to that observed in the corresponding translocation heterozygotes. In the translocations in which the position of the breakpoint could be well defined from mitotic C-banding analysis, a good correspondence between the relative position of the point showing partner exchange in the pachytene quadrivalents and the actual location of the breakpoint was established. It is concluded that the mapping of translocation breakpoints by SC analysis of pachytene quadrivalents provides a more accurate estimate of the position of the breakpoints than that obtained from mitotic C-banding analysis, due to the lack of evenly-distributed interstitial C-bands in most rye chromosomes. The distribution of the breakpoints along the chromosomes in relation to their spontaneous or induced origin is also discussed.  相似文献   

12.
The mitotic chromosome complement of D. ananassae consists of four structurally distinguishable submetacentric pairs and all four have been identified with their linkage groups. For the polytene chromosome complement of six arms representing the X, second and third chromosomes, an improved reference map has been constructed and used to describe selected cytogenetically useful rearrangements. In meiotic prophase of spermatocytes, chromosomes 2 and 3 form pachytene-diplotene bivalents whose arms may be associated by chiasmata in postdiplotene stages, but the X, Y and fourth chromosomes participate in a complex multivalent. No correlation was detected between meiotic chromosome behavior and specific genes that regulate crossing over in males. In male inversion heterozygotes having high levels of genetically monitored crossing over, no unequivocal evidence was found for formation of either pachytene inversion loops or anaphase bridges and fragments.  相似文献   

13.
The Yeast Red1 Protein Localizes to the Cores of Meiotic Chromosomes   总被引:26,自引:2,他引:24       下载免费PDF全文
Mutants in the meiosis-specific RED1 gene of S. cerevisiae fail to make any synaptonemal complex (SC) or any obvious precursors to the SC. Using antibodies that specifically recognize the Red1 protein, Red1 has been localized along meiotic pachytene chromosomes. Red1 also localizes to the unsynapsed axial elements present in a zip1 mutant, suggesting that Red1 is a component of the lateral elements of mature SCs. Anti-Red1 staining is confined to the cores of meiotic chromosomes and is not associated with the loops of chromatin that lie outside the SC. Analysis of the spo11 mutant demonstrates that Red1 localization does not depend upon meiotic recombination. The localization of Red1 has been compared with two other meiosisspecific components of chromosomes, Hop1 and Zip1; Zip1 serves as a marker for synapsed chromosomes. Double labeling of wild-type meiotic chromosomes with anti-Zip1 and anti-Red1 antibodies demonstrates that Red1 localizes to chromosomes both before and during pachytene. Double labeling with anti-Hop1and anti-Red1 antibodies reveals that Hop1 protein localizes only in areas that also contain Red1, and studies of Hop1 localization in a red1 null mutant demonstrate that Hop1 localization depends on Red1 function. These observations are consistent with previous genetic studies suggesting that Red1 and Hop1 directly interact. There is little or no Hop1 protein on pachytene chromosomes or in synapsed chromosomal regions.  相似文献   

14.
Meiotic chromosomes in human oocytes are packaged differently than in spermatocytes at the pachytene stage of meiosis I, when crossing-over takes place. Thus the meiosis-specific pairing structure, the synaptonemal complex (SC), is considerably longer in oocytes in comparison to spermatocytes. The aim of the present study was to examine the influence of this length factor on meiotic recombination in male and female human germ cells. The positions of crossovers were identified by the DNA mismatch repair protein MLH1. Spermatocytes have approximately 50 crossovers per cell in comparison to more than 70 in oocytes. Analyses of inter-crossover distances (and presumptively crossover interference) along SCs suggested that while there might be inter-individual variation, there was no consistent difference between sexes. Thus the higher rate of recombination in human oocytes is not a consequence of more closely spaced crossovers along the SCs. The rate of recombination per unit length of SC is higher in spermatocytes than oocytes. However, when the so-called obligate chiasma is excluded from the analysis, then the rates of recombination per unit length of SC are essentially identical in the two sexes. Our analyses indicate that the inter-sex difference in recombination is largely a consequence of the difference in meiotic chromosome architecture in the two sexes. We propose that SC length per se, and therefore the size of the physical platform for crossing-over (and not the DNA content) is the principal factor determining the difference in rate of recombination in male and female germ cells. A preliminary investigation of SC loop size by fluorescence in situ hybridization (FISH) indicated loops may be shorter in oocytes than in spermatocytes.  相似文献   

15.
16.
R Padmore  L Cao  N Kleckner 《Cell》1991,66(6):1239-1256
In synchronous cultures of S. cerevisiae undergoing meiosis, an early event in the meiotic recombination pathway, site-specific double strand breaks (DSBs), occurs early in prophase, in some instances well before tripartite synaptonemal complex (SC) begins to form. This observation, together with previous results, supports the view that events involving DSBs are required for SC formation. We discuss the possibility that the mitotic pathway for recombinational repair of DSBs served as the primordial mechanism for connecting homologous chromosomes during the evolution of meiosis. DSBs disappear during the period when tripartite SC structure is forming and elongating (zygotene); presumably, they are converted to another type of recombination intermediate. Neither DSBs nor mature recombinant molecules are present when SCs are full length (pachytene). Mature reciprocally recombinant molecules arise at the end of or just after pachytene. We suggest that the SC might coordinate recombinant maturation with other events of meiosis.  相似文献   

17.
The synaptonemal complex (SC) is the key nuclear element formed in meiotic prophase I to join 2 homologous chromosomes at the pachytene bivalent. It is a highly conserved structure that is universally present in eukaryotes. The SC is presented as a tripartite protein structure, which consists of 2 lateral elements and a central region. In insects, the central region is particularly distinct and highly ordered. This made it possible to describe the fine structure of the central region and propose a model of its architecture. Chromatid DNA is arranged in chromatin loops extending radially from the SC. The loops appear to consist of a basic chromatin fiber with a diameter of 20–30 nm. In many insect species, synaptonemal polycomplexes occur in postpachytene cells. They represent one of the possible ways of SC degradation. Another process, which occurs beyond pachytene, is the formation of proteinaceous chromatid axis, the silver-stained chromatid core. Based on results in insect models, the chromatid cores have been related to the structure and formation of the SC. Research on insect models significantly contributed to understanding individual steps of the SC formation and temporal sequence of chromosome pairing. These include the formation of lateral elements of the SC, pairing initiation, interlocking of chromosomes, and synapsis of homologous chromosomes. Attention is also given to non-homologous pairing, including synaptic adjustment, correction of pairing, and pairing of sex chromosomes. In the next section, chiasmatic and achiasmatic modes of meiosis are compared with respect to the SC formation. In the chiasmatic mode, the SCs display recombination nodules that are believed to mediate the process of recombination. These nodules were discovered in insects, and indirect evidence for their role comes from insects. Two different examples of achiasmatic meiosis, occurring in the heterogametic sex of several insect orders, are given: one involves the SC formation, whereas in the other, SCs are absent. Finally, the potential of SC karyotyping for analysis of the insect genome is discussed.  相似文献   

18.
19.
C. Tease  G. Fisher 《Chromosoma》1986,93(5):447-452
Chromosome pairing has been examined in foetal oocytes of mice heterozygous either for an X-linked inversion, In(X)1H, or an autosomal inversion, In(2)2H. The patterns of chromosome pairing have been screened systematically in foetuses of different gestational ages in a search for a production-line effect particularly affecting the inversion-bearing bivalents. The proportion of pachytene oocytes with a loop fell with increasing gestational age for both inversions. The decrease was linear for In(X)1H but best described by a quadratic function for In(2)2H. Examination of late zygotene cells and a comparison of loop frequency in early, mid and late pachytene oocytes suggested this age-related decrease to be principally due to synaptic adjustment and not to a production-line effect. However, two particular observations were somewhat at variance with this conclusion. Firstly, in In(X)1H heterozygotes, the presence of an inversion loop and the occurrence of partial pairing of long/long-medium bivalents at pachytene were independent of each other only on day 19. Secondly, although the proportion of oocytes with a loop fell overall, there was a rise at 19 days in In(2)2H heterozygotes. Thus in both inversions there is some evidence of a change in pairing behaviour affecting the inversion-bearing bivalents at the latest gestational age, as would be expected under the production-line hypothesis.  相似文献   

20.
Using molecular cytogenetic DNA markers, C-banding, pachytene analysis, and fluorescence in situ hybridization (FISH), a high-resolution karyotype was established in the cucumber. C-banding showed distinct hetero chromatic bands on the pericentromeric, telomeric, and intercalary regions of the chromosomes. The C-banding patterns were also consistent with the morphology of 4'-6-diamino-2-phenylindole dihydrochloride (DAPI)-stained pachytene chromosomes. Two repetitive DNA fragments, CsRP1 and CsRP2, were obtained by PCR and localized on the mitotic metaphase and meiotic pachytene chromosomes. CsRP1 was detected on the pericentromeric heterochromatic regions of all chromosomes, except chromosome 1. CsRP2 was detected on 5 (chromosomes 1, 2, 3, 4, and 7) of 7 chromosomes. All homologous chromosome pairs could be distinguished by FISH using 2 RAPD markers. This is the first report on molecular karyotyping of mitotic and meiotic spreads of cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号