首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA deletions in mild and severe Becker muscular dystrophy   总被引:6,自引:0,他引:6  
Summary The DNA of 33 patients diagnosed as suffering from Becker muscular dystrophy (BMD) has been probed with cloned DNA sequences from Xp21, known to reveal DNA deletions in patients suffering from the more severe Duchenne muscular dystrophy (DMD). Two BMD cases showed clear deletions. A third case gave aberrant band sizes, which further analysis showed to be caused by a small deletion. This suggests that deletions in DXS164 occur approximately as frequently in BMD as they do in DMD. Of the two cases showing large deletions, one is at the severe end of the Becker clinical spectrum, whilst the other is a classical Becker-type dystrophy. The fact that loci defined by probes commonly deleted in classical DMD patients are also deleted in BMD patients of varying severity is strong additional evidence that these disorders are allelic, and further justifies the use of probes with defined linkage relationships to DMD also being used for counselling in BMD families.  相似文献   

2.
Using human prophase chromosome ideograms at the 850-band stage, we previously demonstrated that the 24 prophase ideograms can be divided into a set of 94 unique band sequences, each having a recognizable banding pattern distinct from other nonhomologous chromosome portions. Using actual prophase mitotic cells in this study, we analyzed the p arm of chromosome 11 and of chromosomes 16-22 and characterized a similar set of unique band sequences on actual chromosomes. This set of unique band sequences, a statistical comparison scheme, and image-processing techniques outlined in the present report can be used to identify and distinguish banding patterns of these chromosomes and to determine band pattern abnormalities.  相似文献   

3.
本文应用从人类X柒色体Xp~(21)区不同部位分离得到的9种DNA探针,分析了100名正常中国人,38名DMD患者及其母亲X柒色体Xp~(21)区的14个限制性位点多态性(RSP;又称限制性片段长度多态性,RFLP)。发现正常的X染色体与携带DMD基因的X染色体Xp~(21)区的RFLP频率没有明显差别;在38例DMD患者中有7例的X染色体有DNA片段缺失;在本文分析的24例患者母杀中有17例是DMD基因携带者,她们在Xp~(21)区的RFLP均存在杂合的多态性,因此可以应用RFLP连锁分析对这些家系进行DMD的产前诊断。  相似文献   

4.
As chromosomes condense during early mitosis, their subbands fuse in a highly coordinated fashion. Subband fusion occurs when two large subbands flanking one minor subband come together to form one band, which takes on the cytological characteristics of the original flanking subbands. Using four different banding techniques--GTG (G-bands obtained with trypsin and Giemsa), GBG (G-bands obtained with BrdU and Giemsa), RHG (R-bands obtained by heating and Giemsa), and RBG (R-bands obtained with BrdU and Giemsa)--we studied subband fusion from prophase (1,250 bands per haploid set) to late metaphase (300 bands). To quantify the condensation process, a fusion index was established. We found that chromosomes contain preferential zones of condensation. From prophase to late metaphase, the early replicating subbands (R-subbands) fuse more readily with each other than do the late-replicating subbands (G-subbands). R-bands usually replicate early and condense late independently of the adjacent G-bands, which replicate late but condense early. Therefore, chromosome bands can undergo DNA replication and chromatin condensation relatively autonomously. Our data suggest that (1) chromosome replication and condensation are closely connected in time, (2) the metaphase bands represent independent units of chromatin condensation, and (3) the condensation process is an important feature of chromosome organization.  相似文献   

5.
Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans > 15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (L1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to +/- 1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD.  相似文献   

6.
Glycerol kinase deficiency (GKD) is an X-linked recessive trait that occurs in association with congenital adrenal hypoplasia (AH) and developmental delay with or without congenital dystrophic myopathy. Several such patients have recently been reported to have cytological deletions of chromosome region Xp21 and/or of DNA markers that map near the locus for Duchenne muscular dystrophy (DMD) in band Xp21. We have examined the initial family reported in the literature and, using prometaphase chromosome studies and Southern blot analysis with 13 different DNA probes derived from band Xp21, have found no deletions within this region of the X chromosome. When DNA samples from six other unrelated affected males were analyzed, four of them were found to have different-size deletions within Xp21. Thus, the form of GKD associated with AH and dystrophic myopathy exhibits significant genetic heterogeneity at the DNA level. No deletions were detected in two patients with isolated GK deficiency. Comparison of our molecular studies of unrelated patients with deletions of DNA segments allows us to define the region of Xp21 (between probes J-Bir and L1.4) that most likely contains the genes for GKD and AH. This location is distal to the DMD locus. The patients with progressive muscular dystrophy tended to have larger deletions that include markers known to derive from the DMD locus, while GKD/AH/dystrophic-myopathy patients without current evidence of deletion seemed to have a milder, nonprogressive form of congenital myopathy.  相似文献   

7.
Muntjac prophase and metaphase chromosomes were G-banded following methotrexate-mediated synchronization of peripheral lymphocytes. Bands and subbands were characterized from prophase through metaphase, and the progression of band patterns from late prophase to mid-metaphase was analyzed. Extended prophase chromosomes exhibited more bands and subbands, a number of which became fused with each other, giving rise to fewer and thicker bands in the condensed metaphase chromosomes. It appeared that the dark bands condensed relatively more than the light bands. Precise delineation of the bands and subbands on extended prophase chromosomes and the usage of a proposed banding pattern nomenclature should aid in better detection and localization of induced chromosomal rearrangements with this extremely useful experimental material.  相似文献   

8.
The establishment of human chromosomal regions as distinct and characteristic domains has been demonstrated by the reproducible banding patterns observed on metaphase chromosomes as a result of various staining techniques. Although the exact molecular properties responsible for the patterns are not well understood, a general correlation has been established between the time of replication of a particular region of DNA and its banding characteristics. Using a replication timing assay based on fluorescence in situ hybridization patterns, we investigated replication timing properties across chromosomal regions with potentially distinct chromatin properties. Relative replication timing values were determined using cosmid DNA probes around the pseudoautosomal region boundary in Xp22.3 and the cytogenetic band boundary regions surrounding Xp22.2. Although we observed replication timing domains that were generally consistent with cytogenetic banding patterns, we did not find sharp replication timing boundaries at either the pseudoautosomal region boundary or at the cytogenetic band boundaries. Received: 6 September 1997; in revised form: 16 December 1997 / Accepted: 5 January 1998  相似文献   

9.
We have used bivariate flow karyotyping to quantify the deletions involving chromosome 17 in sixteen patients with Smith-Magenis syndrome (SMS). The fluorescence intensities of mitotic chromosomes stained with Hoechst 33258 and chromomycin were quantified in a dual-beam flow cytometer. For each patient, the position of the peak representing the deleted chromosome 17 was compared to those of the normal homologs of an unaffected parent. The patients could be classified into four groups based on the size of their deletions. The deletions ranged from ∼9–10 Mb (∼10–11% of the chromosome) to below the detection limit of the technique (2 Mb). Different deletion sizes were detected among patients whose high-resolution banding results were similar. Some deletions detected by banding were not detected by flow analyses. Deletion estimates are largely consistent with the results of molecular analyses. Patients with larger deletions that extend into band 17p12 have abnormal electrophysiologic studies of peripheral nerves. Deletion size does not appear to correlate with the degree of mental retardation, presence of behavioral abnormalities, craniofacial anomalies or common skeletal findings in SMS. By identifying patients with varying deletion sizes, these data will aid the construction of a long-range deletion-based map of 17p11.2 and identification of the genes involved in this syndrome. Received: 19 March 1996 / Revised: 21 June 1996  相似文献   

10.
Summary Congenital adrenal hypoplasia (CAH) and glycerol kinase deficiency (GKD) were diagnosed in a male during the neonatal period. On prometaphase chromosomes there was an interstitial deletion involving Xp21.2 and possibly Xp21.3 in the propositus and his mother. Duchenne muscular dystrophy (DMD) was excluded on the basis of normal serum creatine kinase and a muscle biopsy. Molecular hybridization of DNA from the propositus with 11 probes covering Xp21, including the DMD locus, was normal. In situ hybridization with the probe pERT87.15 showed a normal signal at the expected site indicating that the DMD locus was preserved and not translocated. This suggests that the DMD locus is located at the most proximal part of the sub-band Xp21.2 or in Xp21.1, and that the DXS68 (probe L1) is far from it on the distal flanking DNA.  相似文献   

11.
Summary We have isolated 23 human X chromosome-specific DNA fragments from libraries, prepared from flow-sorted X chromosomes. To increase diagnostic potential for X-linked genetic disorders, including Duchenne muscular dystrophy (DMD), the fragments were tested for restriction fragment length polymorphisms (RFLPs) with six restriction enzymes. All fragments were regionally mapped to segments of the X chromosome with a panel of somatic cell hybrids and with human cell lines carrying unbalanced chromosomal abnormalities. Two of the isolated probes detected a high frequency RFLP. One, 754, maps between Xp11.3 and Xp21 and detects a PstI polymorphism with an allele frequency of 0.38. The other, 782, maps between Xp22.2 and Xp22.3 and reveals an EcoRI polymorphism with an allele frequency of 0.40. According to a pilot linkage study of families at risk for Duchenne muscular dystrophy, 754 gives a maximum Lod score of 7.6 at a recombination fraction of 0.03. Probe 782 lies telomeric to DMD with a maximum Lod score of 2.2 at a recombination fraction of 0.17. Using our X-chromosomal probes and a set of autosomal probes, isolated and examined in an identical way, we found a significantly lower RFLP frequency for the X chromosome as compared to the autosomes.  相似文献   

12.
There are over 20 females with Duchenne or Becker muscular dystrophy (DMD or BMD) who have X-autosome translocations that break the X chromosome within band Xp21. Several of these translocations have been mapped with genomic probes to regions throughout the large (approximately 2000 kb) DMD gene. In this report, a cDNA clone from the 5' end of the gene was used to further map the breakpoints in four X-autosome translocations. A t(X;21) translocation in a patient with BMD and a t(X;1) translocation in a patient with DMD were found to break within a large 110-kb intron between exons 7 and 8. Two other DMD translocations, t(X;5) and t(X;11), were found to break between the first and the second exon of the gene within a presumably large intron (greater than 100 kb). These results demonstrate that all four translocations have disrupted the DMD gene and make it possible to clone and sequence the breakpoints. This will in turn determine whether these translocations occur by chance in these large introns or whether there are sequences that predispose to translocations.  相似文献   

13.
Genetic and molecular studies show that the Duchenne muscular dystrophy (DMD) locus at Xp21 is large and complex. We have analyzed this region using pulsed field gel electrophoresis (PFGE) and have determined physical distances between Xp21 probes. The sum of the sizes of the Sfil restriction fragments detected by these probes is greater than 4000 kb. The deletion endpoints in two DMD patients were detected by observing changes in these restriction fragments. In addition, the Xp21 breakpoint for the X;1 translocation in an affected female was mapped. These results demonstrate the applicability of PFGE for analysis of Xp21, and should facilitate the mapping of other translocations and deletions in this region, some of which lead to glycerol kinase deficiency and adrenal hypoplasia as well as DMD.  相似文献   

14.
Summary We report two male cousins with Duchenne muscular dystrophy (DMD) in whom cytogenetic studies have shown a small interstitial deletion at Xp21. The lesion is readily detectable in patients and carriers by flow cytometry which indicates that approximately 6000 kb of DNA are deleted in each case. The DNA markers OTC, C7, and B24 are present in the deleted X chromosome but 87-8, 87-1, and 754 are absent. Despite apparently identical deletions one affected boy has profound mental handicap while the other is only mildly retarded. The results confirm the assignment of familial DMD to Xp21 and illustrate the value of flow cytometry in improving the precision of chromosome analysis. We have also undertaken flow cytometry in a cell line from a previously reported DMD patient with a de novo Xp21 deletion who had, in addition, chronic granulomatous disease, retinitis pigmentosa, and the McLeod syndrome. The results indicate that the amount of DNA deleted from the X is similar in both families despite the striking differences in phenotype.  相似文献   

15.
The inheritance of two restriction fragment length polymorphisms (RFLPs) on the short arm of the human X chromosome has been studied relative to Duchenne muscular dystrophy. This provides a partial genetic map of the short arm of the human X chromosome between Xp110 and Xp223. The data were derived from the segregation between a RFLP located at Xp21-Xp223, the DMD locus, and a RFLP located at Xp110-Xp113. The genetic distance from Xp110 to Xp223 was found to be approximately 40 centimorgans (cM). This provides experimental confirmation that 1cM corresponds to approximately 1,000 kilobase pairs of DNA for this region of the human X chromosome. Our data confirm that the DMD mutation lies between Xp223 and Xp110. The availability of flanking probes surrounding the DMD locus will assist in the ordering of further DNA sequences relative to the mutation.  相似文献   

16.
A central concept in genetic counselling is the estimation of the probability of occurrence of unbalanced progeny at birth and other unfavourable outcomes of pregnancy (miscarriages, stillbirths and early death). The estimation of the occurrence probability for individual carriers of four different X-autosome translocations with breakpoints at Xp, namely t(X;5)(p22.2;q32), t(X;6)(p11.2;q21), t(X;7)(p22.2;p11.1), and t(X;22)(p22.1;p11.1), is presented. The breakpoint positions of chromosomal translocations were interpreted using GTG, RBG and FISH-wcp. Most of these translocations were detected in women with normal phenotype, karyotyped because of repeated miscarriages and/or malformed progeny. A girl with very rare pure trisomy Xp22.1-->pter and a functional Xp disomy was ascertained in one family and her clinical picture has been described in details. It has been suggested that not fully skewed X chromosome inactivation of X-autosome translocation with breakpoint positions at Xp22 (critical segment) could influence the phenotype and risk value. Therefore, the X inactivation status was additionally evaluated by analysis of replication banding patterns using RBG technique after incorporation of BrdU. In two carriers of translocations: t(X;5)(p22.2;q32) and t(X;7)(p22.2;p11.1), late replication state of der(X) was observed in 5/100 and 10/180 analysed cells, respectively. In these both cases the breakpoint positions were clustered at the critical segment Xp22.2. In two other cases, one with the breakpoint position within [t(X;22)(p22.1;p11.1)] and one outside the critical region [t(X;6)(p11.2;q21)], fully skewed inactivation was seen. Therefore, we suggest that neither the distribution of the breakpoint positions nor fully skewed inactivation influenced the phenotype of observed t(X;A) carriers. The occurrence probabilities of the unbalanced progeny were calculated according to Stene and Stengel-Rutkowski along with application of updated available empirical data. In the studied group the values of occurrence probability for unbalanced offspring at birth ranged from 2.1% to 17%. Information on the magnitude of the individual figures may be important for women carrying a reciprocal X;A translocation when deciding upon further family planning.  相似文献   

17.
Summary We report a case of a boy with Duchenne muscular dystrophy (DMD) associated with GK deficiency (GK), congenital adrenal hypoplasia (AHC), and mental retardation. Cytogenetic analysis of prometaphasic chromosomes revealed an interstitial chromosome deletion at Xp21.2 possibly extending to Xp21.1 or Xp21.3. His phenotypically normal mother was heterozygous for this deletion. DNA probe analysis on Southern blots showed that the deletion affected the following probe sites: 754, pERT 84, 21A, XJ2.3, pERT 87, JBir, and J66-H1, whereas L1, C7, and CX5.4 probes gave a normal signal. Pulse field gel electrophoresis after SfiI digestion did not show abnormal fragments with L1. These data are consistent with a deletion of about 4 megabases and indicate that the GK and AHC loci are proximal to L1 and distal to J66-H1.  相似文献   

18.
The McLeod phenotype is an X-linked, recessive disorder in which the red blood cells demonstrate acanthocytic morphology and weakened antigenicity in the Kell blood group system. The phenotype is associated with a reduction of in vivo red cell survival, but the permanent hemolytic state is usually compensated by erythropoietic hyperplasia. The McLeod phenotype is accompanied by either a subclinical myopathy and elevated creatine kinase (CK) or X-linked chronic granulomatous disease (CGD). Seven males with the McLeod red-blood-cell phenotype and associated myopathy but not CGD, one male with the McLeod phenotype associated with CGD, and two males known to possess large deletions of the Duchenne muscular dystrophy (DMD) locus were studied. DNA isolated from each patient was screened for the presence or absence of various cloned sequences located in the Xp21 region of the human X chromosome. Two of the seven males who have only the McLeod phenotype and are cousins exhibit deletions for four Xp21 cloned fragments but are not deleted for any portion of either the CGD or the DMD loci. Comparison of the cloned segments absent from these two McLeod cousins with those absent from the two DMD boys and the CGD/McLeod patient leads to the submapping of various cloned DNA segments within the Xp21 region. The results place the locus for the McLeod phenotype within a 500-kb interval distal from the CGD locus toward the DMD locus.  相似文献   

19.
By cloning the endpoints of a DMD-associated deletion, we have "jumped" 1100 kb from pERT87-1 (DSX164) to a new locus designated J66 (DXS268), mapping distally within the Duchenne muscular dystrophy (DMD) gene. Both J66 and JBir are mapped by field-inversion gel electrophoresis and detect abnormal SfiI fragments in DMD patients and distal DMD-associated X; autosome translocations. Our long-range map extends the physical map of the DMD gene from 800 to 2000 kb (2 Mb) and increases the mapped portion of Xp21 to approximately 8 Mb. The position of the glycerol kinase gene and the adrenal hypoplasia locus are further confined to the region between J66 and the nearest distal probe L1-4. This region spans at least 1.5 Mb. The multiallelic J66 polymorphism has immediate application in the diagnosis of DMD and generally appears to be distal to DMD mutations.  相似文献   

20.
T Meitinger  Y Boyd  R Anand  I W Craig 《Genomics》1988,3(4):315-322
Balanced translocations with a breakpoint in the Xp21 region are likely to disrupt the giant Duchenne muscular dystrophy (DMD) locus and can be demonstrated in females suffering from the disease. Pulsed field gel electrophoresis allows the positioning of these breakpoints by detecting junction fragments on the derived chromosomes; DNA probes hybridizing to these fragments may be located as many as several hundred kilobases away from the breakpoints. By using this approach, 11 translocation breakpoints from the Xp21 region have been analyzed. The localization of three previously examined breakpoints was confirmed. Six other breakpoints, including a breakpoint flanking the DMD gene and not associated with the DMD phenotype, could be positioned relative to SfiI sites on a 3.5-Mb restriction map of the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号