首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+/H+ exchanger catalyzes the countertransport of Na+ and H+ across membranes. Using the rapid amplification of cDNA ends method, a Na+/H+ antiporter gene (ThNHX1) was isolated from a halophytic plant, salt cress (Thellungiella halophila). The deduced amino acid sequence contained 545 amino acid residues with a conserved amiloride-binding domain (87LFFIYLLPPI96) and shared more than 94% identity with that of AtNHX1 from Arabidopsis thaliana. The ThNHX1 mRNA level was upregulated by salt and other stresses (abscisic acid, polyethylene glycol, and high temperature). This gene partially complemented the Na+/Li+-sensitive phenotype of a yeast mutant that was deficient in the endosomal–vacuolar Na+/H+ antiporter ScNHX1. Overexpression of ThNHX1 in Arabidopsis increased salt tolerance of transgenic plants compared with the wild-type plants. In addition, the silencing of ThNHX1 gene in T. halophila caused the transgenic plants to be more salt and osmotic sensitive than wild-type plant. Together, these results suggest that ThNHX1 may function as a tonoplast Na+/H+ antiporter and play an important role in salt tolerance of T. halophila. Chunxia Wu, Xiuhua Gao, and Xiangqiang Kong contributed equally to this work.  相似文献   

2.
To obtain an insight into the comprehensive molecular characteristics of the salt tolerance mechanism, we performed a screening for salt inducible genes in a halophytic plant, Salicornia herbacea, using mRNA differential display. A comparative analysis of gene expression in Salicornia grown in control and salt-stressed conditions led to the detection of a gene that was induced by salt. Both sequence analysis and a subsequent database search revealed that this gene was highly homologous to tonoplast intrinsic proteins (TIPs) from a variety of plant species. This gene, designated as ShTIP, is 1014 bp in size and contains a coding region of 762 nucleotides, which encodes a protein of 254 amino acids. Northern blot analysis revealed that ShTIP was predominantly expressed in shoots under normal conditions. However, salt stress induced high expression of ShTIP in both the shoots and roots. The expression of ShTIP in a salt-sensitive calcineurin-deficient yeast mutant (cnbΔ) resulted in a resistance to the high salt conditions. In addition, we compared the expression of a TIP gene in Arabidopsis with that of ShTIP under different conditions and found that the Salicornia TIP has a different regulatory mechanism for adapting to salt stress conditions compared with the glycophyte Arabidopsis TIP. These results indicate that ShTIP plays an important role in salt tolerance.  相似文献   

3.
Li HQ  Xu J  Chen L  Li MR 《Plant cell reports》2007,26(10):1785-1789
Thellungiella halophila is a salt-tolerant close relative of Arabidopsis, which is adopted as a halophytic model for stress tolerance research. We established an Agrobacterium tumefaciens-mediated transformation procedure for T. halophila. Leaf explants of T. halophila were incubated with A. tumefaciens strain EHA105 containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing β-glucuronidase gene as a reporter gene. Following co-cultivation, leaf explants were cultured on selective medium containing 10 mg l−1 hygromycin and 500 mg l−1 cefotaxime. Hygromycin-resistant calluses were induced from the leaf explants after 3 weeks. Shoot regeneration was achieved after transferring the calluses onto fresh medium of the same composition. Finally, the shoots were rooted on half strength MS basal medium supplemented with 10 mg l−1 hygromycin. Incorporation and expression of the transgenes were confirmed by PCR, Southern blot analysis and GUS histochemical assay. Using this protocol, transgenic T. halophila plants can be obtained in approximately 2 months with a high transformation frequency of 26%.  相似文献   

4.
5.
6.
N-Acetyltransferase Mpr1 of Saccharomyces cerevisiae can reduce intracellular oxidation levels and protect yeast cells under oxidative stress, including H2O2, heat-shock, or freeze-thaw treatment. Unlike many antioxidant enzyme genes induced in response to oxidative stress, the MPR1 gene seems to be constitutively expressed in yeast cells. Based on a recent report that ethanol toxicity is correlated with the production of reactive oxygen species (ROS), we examined here the role of Mpr1 under ethanol stress conditions. The null mutant of the MPR1 and MPR2 genes showed hypersensitivity to ethanol stress, and the expression of the MPR1 gene conferred stress tolerance. We also found that yeast cells exhibited increased ROS levels during exposure to ethanol stress, and that Mpr1 protects yeast cells from ethanol stress by reducing intracellular ROS levels. When the MPR1 gene was overexpressed in antioxidant enzyme-deficient mutants, increased resistance to H2O2 or heat shock was observed in cells lacking the CTA1, CTT1, or GPX1 gene encoding catalase A, catalase T, or glutathione peroxidase, respectively. These results suggest that Mpr1 might compensate the function of enzymes that detoxify H2O2. Hence, Mpr1 has promising potential for the breeding of novel ethanol-tolerant yeast strains.  相似文献   

7.
Mitsuya S  Taniguchi M  Miyake H  Takabe T 《Planta》2005,222(6):1001-1009
For plant salt tolerance, it is important to regulate the uptake and accumulation of Na+ ions. The yeast pmp3 mutant which lacks PMP3 gene accumulates excess Na+ ions in the cell and shows increased Na+ sensitivity. Although the function of PMP3 is not fully understood, it is proposed that PMP3 contributes to the restriction of Na+ uptake and consequently salt tolerance in yeasts. In this paper, we have investigated whether the lack of RCI2A gene, homologous to PMP3 gene, causes a salt sensitive phenotype in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) plants; and to thereby indicate the physiological role of RCI2A in higher plants. Two T-DNA insertional mutants of RCI2A were identified. Although the growth of rci2a mutants was comparable with that of wild type under normal conditions, high NaCl treatment caused increased accumulation of Na+ and more reduction of the growth of roots and shoots of rci2a mutants than that of wild type. Undifferentiated callus cultures regenerated from rci2a mutants also accumulated more Na+ than that from wild type under high NaCl treatment. Furthermore, when wild-type and rci2a plants were treated with NaCl, NaNO3, Na2SO4, KCl, KNO3, K2SO4 or LiCl, the rci2a mutants showed more reduction of shoot growth than wild type. Under treatments of tetramethylammonium chloride, CaCl2, MgCl2, mannitol or sorbitol, the growth reduction was comparable between wild-type and rci2a plants. These results suggested that RCI2A plays a role directly or indirectly for avoiding over-accumulation of excess Na+ and K+ ions in plants, and contributes to salt tolerance.  相似文献   

8.
Oxidative stress causes damage to proteins, lipids and nucleic acids, and thereby compromises cell viability. Some of the oxidative stress markers in an eukaryotic model organism, fission yeast Schizosaccharomyces pombe, were evaluated in this study. Intracellular oxidation, protein carbonyls, lipid peroxidation and reduced glutathione (GSH) levels were investigated in H2O2-treated and non-treated control cells. It was observed that increased H2O2 concentration proportionally lowered the cell number and increased the intracellular oxidation, lipid peroxidation and protein carbonyl levels in S. pombe. A dose-dependent decrease in GSH level was also detected. The fission yeast S. pombe is best known for its contribution to understanding of eukaryotic cell cycle control. S. pombe displays a different physiology from Saccharomyces cerevisiae in several ways and is thus probably more closely related to higher eukaryotes. The purpose of this study was to provide some data about the effects of hydrogen peroxide on the proteins and lipids in the fission yeast. The data obtained here is expected to constitute a basis for the further studies on redox balance and related processes in yeast and mammalian cells.  相似文献   

9.
10.
Aluminium (Al) tolerance in barley is conditioned by the Alp locus on the long arm of chromosome 4H, which is associated with Al-activated release of citrate from roots. We developed a high-resolution map of the Alp locus using 132 doubled haploid (DH) lines from a cross between Dayton (Al-tolerant) and Zhepi 2 (Al-sensitive) and 2,070 F2 individuals from a cross between Dayton and Gairdner (Al-sensitive). The Al-activated efflux of citrate from the root apices of Al-tolerant Dayton was 10-fold greater than from the Al-sensitive parents Zhepi 2 and Gairdner. A suite of markers (ABG715, Bmag353, GBM1071, GWM165, HvMATE and HvGABP) exhibited complete linkage with the Alp locus in the DH population accounting 72% of the variation for Al tolerance evaluated as relative root elongation. These markers were used to map this genomic region in the Dayton/Gairdner population in more detail. Flanking markers HvGABP and ABG715 delineated the Alp locus to a 0.2 cM interval. Since the HvMATE marker was not polymorphic in the Dayton/Gairdner population we instead investigated the expression of the HvMATE gene. Relative expression of the HvMATE gene was 30-fold greater in Dayton than Gardiner. Furthermore, HvMATE expression in the F2:3 families tested, including all the informative recombinant lines identified between HvGABP and ABG715 was significantly correlated with Al tolerance and Al-activated citrate efflux. These results identify HvMATE, a gene encoding a multidrug and toxic compound extrusion protein, as a candidate controlling Al tolerance in barley.  相似文献   

11.
Four genes encoding cold shock domain (CSD) proteins have been identified in salt cress Thellungiella salsuginea (halophila), an extremophyte currently recognized as a promising model for studying stress tolerance]. The deduced proteins prove highly homologous to those of Arabidopsis thaliana (up to 95% identity) and are accordingly enumerated TsCSDP1-TsCSDP4; after the N-proximal conserved CSD, they have respectively 6, 2, 7, and 2 zinc finger motifs evenly spaced by Gly-rich stretches. Much lower similarity (∼45%) is observed in the regions upstream of TATA-box promoters of TsCSDP1 vs. AtCSP1, with numerous distinctions in the sets of identifiable cis-regulatory elements. Plasmid expression of TsCSDP1 (like AtCSP1/3) rescues a cold-sensitive csp-lacking mutant of Escherichia coli, confirming that the protein is functional. In leaves of salt cress plants under normal conditions, the mRNA levels for the four TsCSDPs relate as 10: 27: 1: 31. Chilling to 4°C markedly alters the gene expression; the 4-day dynamics are different for all four genes and quite dissimilar from those reported for their Arabidopsis homologous under comparable conditions. Thus, the much greater cold hardiness of Thellungiella vs. Arabidopsis cannot be explained by structural distinctions of its CSDPs, but rather may be due to expedient regulation of their expression at low temperature.  相似文献   

12.
13.
14.
Cheng Y  Long M 《Biotechnology letters》2007,29(7):1129-1134
NADP-malic enzyme (NADP-ME, EC 1.1.1.40) functions in many different pathways in plant and may be involved in plant defense such as wound and UV-B radiation. Here, expression of the gene encoding cytosolic NADP-ME (cytoNADP-ME, GenBank Accession No. AY444338) in rice (Oryza sativa L.) seedlings was induced by salt stress (NaCl). NADP-ME activities in leaves and roots of rice also increased in response to NaCl. Transgenic Arabidopsis plants over-expressing rice cytoNADP-ME had a greater salt tolerance at the seedling stage than wild-type plants in MS medium-supplemented with different levels of NaCl. Cytosolic NADPH/NADP+ concentration ratio of transgenic plants was higher than those of wild-type plants. These results suggest that rice cytoNADP-ME confers salt tolerance in transgenic Arabidopsis seedlings.  相似文献   

15.
16.
Rice yield is severely affected by high-salt concentration in the vicinity of the plant. In an effort to engineer rice for improved salt tolerance Agrobacterium-mediated transformation of rice cv. Binnatoa was accomplished with the Pennisetum glaucum vacuolar Na+/H+ antiporter gene (PgNHX1) under the constitutive CaMV35S promoter. For the molecular analysis of putative transgenic plants, PCR and RT-PCR were performed. Transgenic rice plants expressing PgNHX1 showed better physiological status and completed their life cycle by setting flowers and seeds in salt stress, while wild-type plants exhibited rapid chlorosis and growth inhibition. Moreover, transgenic rice plants produced higher grain yields than wild-type plants under salt stress. Assessment of the salinity tolerance of the transgenic plants at seedling and reproductive stages demonstrated the potential of PgNHX1 for imparting enhanced salt tolerance capabilities and improved yield.  相似文献   

17.
Plants of which the roots are colonized by selected strains of non-pathogenic, fluorescent Pseudomonas spp. develop an enhanced defensive capacity against a broad spectrum of foliar pathogens. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance (SAR), ISR is not associated with systemic changes in the expression of genes encoding pathogenesis-related (PR) proteins. To identify genes that are specifically expressed in response to colonization of the roots by ISR-inducing Pseudomonas fluorescens WCS417r bacteria, we screened a collection of Arabidopsis enhancer trap and gene trap lines containing a transposable element of the Ac/Ds system and the GUS reporter gene. We identified an enhancer trap line (WET121) that specifically showed GUS activity in the root vascular bundle upon colonization of the roots by WCS417r. Fluorescent Pseudomonas spp. strains P. fluorescens WCS374r and P. putida WCS358r triggered a similar expression pattern, whereas ISR-non-inducing Escherichia coli bacteria did not. Exogenous application of the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) mimicked the rhizobacteria-induced GUS expression pattern in the root vascular bundle, whereas methyl jasmonic acid and salicylic acid did not, indicating that the Ds element in WET121 is inserted in the vicinity of an ethylene-responsive gene. Analysis of the expression of the genes in the close vicinity of the Ds element revealed AtTLP1 as the gene responsible for the in cis activation of the GUS reporter gene in the root vascular bundle. AtTLP1 encodes a thaumatin-like protein that belongs to the PR-5 family of PR proteins, some of which possess antimicrobial properties. AtTLP1 knockout mutant plants showed normal levels of WCS417r-mediated ISR against the bacterial leaf pathogen Pseudomonas syringae pv. tomato DC3000, suggesting that expression of AtTLP1 in the roots is not required for systemic expression of ISR in the leaves. Together, these results indicate that induction of AtTLP1 is a local response of Arabidopsis roots to colonization by non-pathogenic fluorescent Pseudomonas spp. and is unlikely to play a role in systemic resistance.  相似文献   

18.
19.
Yang J  Guo Z 《Plant cell reports》2007,26(8):1383-1390
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses. Oxidative cleavage of cis-epoxycarotenoids catalyzed by 9-cis-epoxycarotenoid dioxygenase (NCED) is the main regulatory step in the biosynthesis of ABA in higher plants. A NCED gene, SgNCED1, was cloned from the dehydrated leaves of Stylosanthes guianensis. The 2,241-bp full-length SgNCED1 had a 1,809-bp ORF, which encodes a peptide of 602 amino acids. The deduced amino acid sequence of SgNCED1 protein shared high identity with other NCEDs. At the N-terminus of the SgNCED1 located a chloroplast transit peptide sequence. DNA blot analysis revealed that SgNCED1 was a single copy gene in the genome of S. guianensis. The relationship between expression of SgNCED1 and endogenous ABA level was investigated. The expression of SgNCED1 was induced in both leaves and roots of S. guianensis under drought stress. Dehydration and salt stress induced the expression of SgNCED1 strongly and rapidly. The ABA accumulation was coincidently induced with the SgNCED1 mRNA under drought, dehydration and salt stress. The expression of SgNCED1 and ABA accumulation were also induced under chilling condition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号