首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The exocellular proteinases of asporogenic and sporogenicBacillus megaterium KM (megaterioproteinase A and S) were found to be active enzymes of the monomer type. The electrophoretic mobility of megaterioproteinase A is higher than that of S on acrylamide gel. After mixing, the enzymes could be separated again. The molecular weight of megaterioproteinase A was found to be 20,000–23,500, that of megaterioproteinase S 16,500–20,000 daltons, according to the “molecular sieving” method. The electrophoretic mobility of both proteinases was determined at different pH and the graphically calculated isoelectric point (pI) was found to be 7.3–7.4. The pK values of the ES complex estimated by plotting the logarithm of the maximum velocity of the enzymic reaction against pH were 6.0–6.1 and 7.8–8.0 for both megaterioproteinases. The activation energy was 13,500–13,600 for both enzymes. It is concluded that the above two enzymes resemble each other in enzymic properties but differ in electrophoretic mobility and probably also in molecular weight.  相似文献   

2.
An alkalophilic Bacillus sp., strain GX6638 (ATCC 53278), was isolated from soil and shown to produce a minimum of three alkaline proteases. The proteases were purified by ion-exchange chromatography and were distinguishable by their isoelectric point, molecular weight, and electrophoretic mobility. Two of the proteases, AS and HS, which exhibited the greatest alkaline and thermal stability, were characterized further. Protease HS had an apparent molecular weight of 36,000 and an isoelectric point of approximately 4.2, whereas protease AS had a molecular weight of 27,500 and an isoelectric point of 5.2. Both enzymes had optimal proteolytic activities over a broad pH range (pH 8 to 12) and exhibited temperature optima of 65 degrees C. Proteases HS and AS were further distinguished by their proteolytic activities, esterolytic activities, sensitivity to inhibitors, and their alkaline and thermal stability properties. Protease AS was extremely alkali stable, retaining 88% of initial activity at pH 12 over a 24-h incubation period at 25 degrees C; protease HS exhibited similar alkaline stability properties to pH 11. In addition, protease HS had exceptional thermal stability properties. At pH 9.5 (0.1 M CAPS buffer, 5 mM EDTA), the enzyme had a half-life of more than 200 min at 50 degrees C and 25 min at 60 degrees C. At pH above 9.5, protease HS readily lost enzymatic activity even in the presence of exogenously supplied Ca2+. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. In contrast, protease AS was more stable at pH above 9.5, and Ca2+ addition extended the half-life of the enzyme 10-fold at 60 degrees C. The data presented here clearly indicate that these two alkaline proteases from Bacillus sp. strain GX6638 represent novel proteases that differ fundamentally from the proteases previously described for members of the genus Bacillus.  相似文献   

3.
Acinetobacter calcoaceticus is known to contain soluble and membrane-bound quinoprotein D-glucose dehydrogenases, while other oxidative bacteria contain the membrane-bound enzyme exclusively. The two forms of glucose dehydrogenase were believed to be the same enzyme or interconvertible forms. Previously, Matsushita et al. [(1988) FEMS Microbiol. Lett 55, 53-58] showed that the two enzymes are different with respect to enzymatic and immunological properties, as well as molecular weight. In the present study, we purified both enzymes and compared their kinetics, reactivity with ubiquinone homologues, and immunological properties in detail. The purified membrane-bound enzyme had a molecular weight of 83,000, while the soluble form was 55,000. The purified enzymes exhibited totally different enzymatic properties, particularly with respect to reactivity toward ubiquinone homologues. The soluble enzyme reacted with short-chain homologues only, whereas the membrane-bound enzyme reacted with long-chain homologues including ubiquinone 9, the native ubiquinone of the A. calcoaceticus. Furthermore, the two enzymes were distinguished immunochemically; the membrane-bound enzyme did not cross-react with antibody raised against the soluble enzyme, nor did the soluble enzyme cross-react with antibody against the membrane-bound enzyme. Thus, each glucose dehydrogenase is a molecularly distinct entity, and the membrane-bound enzyme only is coupled to the respiratory chain via ubiquinone.  相似文献   

4.
Gamma-glutamyl transpeptidase was purified from human pancreas to an electrophoretically homogeneous state. The enzyme was separated into two active fractions on a DEAE-cellulose column. Both enzyme preparations had the same molecular weight (9 x 10(4)) and were composed of two nonidentical subunits (molecular weight, 61,000 and 27,000). While the optimum pH and pH- and thermal-stability range of both enzymes were identical, their isoelectric points were considerably different. Following incubation with neuraminidase, however, the isoelectric point of F-11 became similar to that of F-I, suggesting that this difference in electrophoretic mobility is due to a difference in the content of sialic acid moiety.  相似文献   

5.
Physico-chemical parameters of subtilisins from the original Bacillus subtilis A-50 strain (proteolytic activity, electrophoretic mobility, molecular weight, reactions with specific inhibitors) were similar to those mentioned in the literature for the enzymes of other strains. Immunological experiment has shown, that Bacillus subtilis A-50 subtilisins with various electrophoretic mobility do not differ in their antigenic properties. Enzymes with high electrophoretic mobility from mutant strains were similar to I--III subtilisin fractions from Bac. subtilis A-50 in the antigenic characteristics. However, the antigenic heterogeneity was observed in I, II and III enzyme fractions of some mutant strains. Subtilisins studied appear to form the isoenzyme system.  相似文献   

6.
The two caprine hepatic beta-mannosidases have been partially purified and their properties have been compared. The lysosomal beta-mannosidase A had an apparent molecular weight of 127,000 +/- 10,000 and an isoelectric point of pH 6-7. Its activity was unaffected by incubation with Triton X-100 (0.1%) and cysteine (20 mM) and it hydrolyzed the presumed natural substrates, Man(beta 1-4)GlcNAc and Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc. The nonlysosomal beta-mannosidase B had an apparent molecular weight of 43,000 +/- 2,000 and an isoelectric point of pH 5.5. beta-Mannosidase B was activated by Triton X-100 (0.1%) and was inhibited by cysteine (20 mM). Hydrolysis of Man(beta 1-4)GlcNAc, but not of Man(beta 1-4)GlcNAc(beta 1-4)GlcNAc, followed incubation with beta-mannosidase B. 1,5-Dideoxy-1,5-imino-D-mannitol did not inhibit the A enzyme and only feebly (Ki = 0.3 mM) inhibited the B enzyme; beta-D-mannopyranosylmethyl p-nitrophenyl triazene did not inactivate either enzyme but 1,2-anhydro-1,2,3,5,6/4-cyclohexane hexol inactivated the B enzyme only. The radical mechanistic differences between the two enzymes argue against their having the same genetic origin.  相似文献   

7.
Three membranous protein tyrosine kinases (PTKs) have been partially purified from human placenta and pig brain. The two placental enzymes (PTK-1 and -2) are distinct with respect to solubility in detergents, molecular weight, and enzymatic properties. The brain protein tyrosine kinase resembles placental PTK-1 with respect to molecular weight and some kinetic properties. However, stimulation of brain PTK is greater with Mn2+ than with Mg2+ whereas placental PTK-1 gives higher rates with Mg2+ than with Mn2+. All three enzymes are inhibited about 50% by 0.1 M NaCl. A monoclonal antibody raised in vitro against the brain enzyme inhibits brain PTK as well as placental PTK-2, but has no effect against PTK-1 or pp60src. It thus appears that these three enzymes are distinct entities that differ from each other both kinetically and immunologically. With synthetic tyrosine-glutamic acid polymers as a substrate, protein tyrosine kinase activity can be detected in crude extracts of membranes.  相似文献   

8.
Highly purified chorionic alpha-microglobulin was isolated from amniotic fluid by precipitation with lantham chloride, ammonium and lithium sulfates coupled with adsorption chromatography with calcium pyrophosphate. The following physicochemical properties of the protein were determined: molecular weight, relative electrophoretic mobility, interaction with protamine sulfate and lectins, enzymatic stability and precipitation with salts.  相似文献   

9.
Two types of acid proteases, cathepsin D and cathepsin E-like enzyme, from rat gastric mucosa and spleen were compared in their biochemical and immunochemical properties. The enzymes were partially purified by employing the same chromatographic procedures and they showed a single proteolytically active band in polyacrylamide gel electrophoresis. Two low molecular weight enzymes, cathepsins D, from both tissues showed the same molecular weight and the same sensitivities to various inhibitors, but slightly different electrophoretic mobilities. The rabbit antiserum raised against gastric mucosa cathepsin D precipitated both enzymes. On the other hand, high molecular weight enzymes, gastric mucosa cathepsin D-like acid proteinase and spleen cathepsin E-like acid proteinase, were similar to each other as judged by their chromatographic profiles, electrophoretic mobilities, and high stabilities in urea solution. Furthermore, the antiserum specific to gastric mucosa cathepsin D-like acid proteinase inhibited both enzyme activities in a similar manner. However, the antiserum specific to one type of enzyme did not react with the other type. These results indicate that: gastric mucosa cathepsin D is immunologically identical with spleen cathepsin D; gastric mucosa cathepsin D-like acid proteinase has biochemical and immunological properties quite similar to spleen cathepsin E-like enzyme; these two types of acid proteases are quite different proteins existing in the individual tissues.  相似文献   

10.
An adenosine triphosphatase (ATPase EC 3.6.1.3) was partially purified from myeloblasts of chicken infected with the avian myeloblastosis virus and some of its molecular, catalytic and immunological properties were compared with that of the ATPase purified from the virus. Both the enzymes possessed almost same electrophoretic mobility, molecular weight, S20,w value, substrate specificity, metal-ion requirement, apparent Km value and sensitivity to inhibitors and activator. Evidence also indicated immunological identity of the two enzymes. The insensitivity of this enzyme to rutamycin or ouabain and extreme sensitivity to most of the detergents, trypsin and mercurials are the remarkable properties of this enzyme.  相似文献   

11.
Fructosyltransferase (EC.2.4.1.9) and invertase (EC.3.2.1.26) have been purified from the crude extract of Aspergillus niger AS0023 by successive chromatographies on DEAE-sephadex A-25, sepharose 6B, sephacryl S-200, and concanavalin A-Sepharose 4B columns. On acrylamide electrophoresis the two enzymes, in native and denatured forms, gave diffused glycoprotein bands with different electrophoretic mobility. On native-PAGE and SDS-PAGE, both enzymes migrated as polydisperse aggregates yielding broad and diffused bands. This result is typical of heterogeneous glycoproteins and the two enzymes have proved their glycoprotein nature by their adsorption on concanavalin A lectin. Fructosyltransferase (FTS) on native PAGE migrated as two enzymatically active bands with different electrophoretic mobility, one around 600 kDa and the other from 193 to 425 kDa. On SDS-PAGE, these two fractions yielded one band corresponding to a molecular weight range from 81 to 168 kDa. FTS seems to undergo association-dissociation of its glycoprotein subunits to form oligomers with different degrees of polymerization. Invertase (INV) showed higher mobility corresponding to a molecular range from 82 to 251 kDa, on native PAGE, and from 71 to 111 kDa on SDS-PAGE. The two enzymes exhibited distinctly different pH and temperature profiles. The optimum pH and temperature for FTS were found to be 5.8 and 50 degrees C, respectively, while INV showed optimum activity at pH 4.4 and 55 degrees C. Metal ions and other inhibitors had different effects on the two enzyme activities. FTS was completely abolished with 1 mM Hg(2+) and Ag(2+), while INV maintained 72 and 66% of its original activity, respectively. Furthermore, the two enzymes exhibited distinctly different kinetic constants confirming their different nature. The K(m) and V(m) values for each enzyme were calculated to be 44.38 mM and 1030 micromol ml(-1)min(-1) for FTS and 35.67 mM and 398 micromol ml(-1) min(-1) for INV, respectively. FTS and INV catalytic activity was dependent on sucrose concentration. FTS activity increased with increasing sucrose concentrations, while INV activity decreased markedly with increasing sucrose concentration. Furthermore, INV exhibited only hydrolytic activity producing exclusively fructose and glucose from sucrose, while FTS catalyzed exclusively fructosyltransfer reaction producing glucose, 1-kestose, nystose and fructofuranosyl nystose. In addition, at 50% sucrose concentration FTS produced fructooligosaccharides at the yield of 62% against 54% with the crude extract.  相似文献   

12.
Alanine aminotransferase (AlaAT, EC 2.6.1.2) and glycine aminotransferase (GlyAT, EC 2.6.1.4), two different enzymes catalyzing transamination reactions with L-alanine as the amino-acid substrate, were examined in maize in which alanine participates substantially in nitrogen transport. Preparative PAGE of a partially purified preparation of aminotransferases from maize leaves gave 6 fractions differing in electrophoretic mobility. The fastest migrating fraction I represents AlaAT specific for L-alanine as amino donor and 2-oxoglutarate as amino acceptor. The remaining fractions showed three aminotransferase activities: L-alanine-2-oxoglutarate, L-alanine-glyoxylate and L-glutamate-glyoxylate. By means of molecular sieving on Zorbax SE-250 two groups of enzymes were distinguished in the PAGE fractions: of about 100 kDa and 50 kDa. Molecular mass of 104 kDa was ascribed to AlaAT in fraction I, while the molecular mass of the three enzymatic activities in 3 fractions of the low electrophoretic mobility was about 50 kDa. The response of these fractions to: aminooxyacetate, 3-chloro-L-alanine and competing amino acids prompted us to suggest that five out of the six preparative PAGE fractions represented GlyAT isoforms, differing from each other by the L-glutamate-glyoxylate:L-alanine-glyoxylate:L-alanine-2-oxoglutarate activity ratio.  相似文献   

13.
NADH-specific dihydropteridine reductase [EC 1.6.99.7] was purified from mouse mastocytoma P-815 cells. Km values for NADH and NADPH were determined to be 1.4 microM and 32 microM, respectively, using tetrahydro-6-methylpterin. Molecular weight was 50,000, and subunit molecular weight was 25,000. The enzymes from P-815 and liver of host mouse (DBA/2) showed similar electrophoretic mobility on polyacrylamide gel. The P-815 enzyme reacted with antiserum against bovine liver NADH-specific dihydropteridine reductase, forming a single precipitin line.  相似文献   

14.
Excellent correlation was observed for the electrophoretic mobilities measured by capillary zone electrophoresis versus q/MW2/3, where q is the calculated charge and MW is the molecular weight. Mobilities of a set of 33 diverse peptides from enzymatic digests and 10 intact proteins were measured for separations at pH 2.35, 8.0, and 8.15 with constant ionic strength, temperature, and viscosity. The correlation suggests that the frictional drag is proportional to the surface area of a sphere that has a volume proportional to the MW. The correlation of electrophoretic mobility with physicochemical properties will facilitate the elucidation of optimum separation strategies for protein and peptide mixtures.  相似文献   

15.
Fructose 1,6-diphosphate aldolase from cells of Bacillus cereus appears to be typical Class II aldolase as judged by its functional and physical properties. Spore and vegetative cell aldolase had similar enzymatic, immunochemical, and heat resistance properties in the absence of calcium, but they differed in their thermal stabilities in the presence of calcium, their Stokes' radii, their mobility in acrylamide gel electrophoresis, and their molecular weights. The pH optimum for both enzymes was 8.5, and their K(m) with respect to substrate was 2 x 10(-3)m. Highly purified spore and vegetative cell aldolases were both heat labile with half-lives of 4 min at 53 C and pH 6.4. In the presence of 3 x 10(-2)m solution of calcium ions, the stability of the spore protein increased 12-fold but the vegetative form became more heat labile. The enhanced stability of the spore aldolase was not diminished by dialysis or gel filtration but was lost after chromatography on diethylaminoethyl cellulose at pH 7.4. Aldolase from vegetative cells exists in an equilibrium mixture of two molecular weights, 115,000 and 79,000 in the approximate ratio of 1:4, respectively. The molecular weight of spore aldolase is 44,000. Spore aldolase was more mobile during electrophoresis than its vegetative cell counterpart because of its smaller size.  相似文献   

16.
The molecules occurring as terminal residues on the external surfaces of nuclei prepared from rat liver by either sucrose-CaCl2 or citric acid methods and nucleoli derived from the sucrose-CaCl2 nuclei were studied chemically and electrokinetically. In 0.0145 M NaCl, 4.5% sorbitol, and 0.6 mM NaHCO3 with pH 7.2 ± 0.1 at 25°C, the sucrose-CaCl2 nuclei had an electrophoretic mobility of -1.92 µm/s/V/cm, the citric acid nuclei, -1.63 µm/s/V/cm, and the nucleoli, -2.53 µm/s/V/cm. The citric acid nuclei and the nucleoli contained no measurable sialic acid. The sucrose-CaCl2 nuclei contained 0.7 nmol of sialic acid/mg nuclear protein; this was essentially located in the nuclear envelope. Treatment of these nuclei with 50 µg neuraminidase/mg protein resulted in release of 0.63 nmol of sialic acid/mg nuclear protein; treatment with 1 % trypsin caused release of 0.39 nmol of the sialic acid/mg nuclear protein. The pH-mobility curves for the particles indicated the sucrose-CaCl2 nuclei surface had an acid-dissociable group of pK. ~2.7 while the pK for the nucleoli was considerably lower. Nucleoli treated with 50 µg neuraminidase/mg particle protein had a mobility of -2.53 µm/s/V/cm while sucrose-CaCl2 nuclei similarly treated had a mobility of -1.41 µm/s/V/cm. Hyaluronidase at 50 µg/mg protein had no effect on nucleoli mobility but decreased the sucrose-CaCl2 nuclei mobility to -1.79 µm/s/V/cm. Trypsin at 1 % elevated the electrophoretic mobility of the sucrose-CaCl2 nuclei slightly but decreased the mobility of the nucleoli to -2.09 µm/s/V/cm. DNase at 50 µg/mg protein had no effect on the mobility of the isolated sucrose-CaCl2 nuclei but decreased the electrophoretic mobility of the nucleoli to -1.21 µm/s/V/cm. RNase at 50 µg/mg protein also had no effect on the electrophoretic mobility of the sucrose-CaCl2 nuclei but decreased the nucleoli mobility to -2.10 µm/s/V/cm. Concanavalin A at 50 µg/mg protein did not alter the nucleoli electrophoretic mobility but decreased the sucrose-CaCl2 nuclei electrophoretic mobility to -1.64 µm/s/V/cm. The results are interpreted to mean that the sucrose-CaCl2 nuclear external surface contains terminal sialic acid residues in trypsin-sensitive glycoproteins, contains small amounts of hyaluronic acid, is completely devoid of nucleic acids, and binds concanavalin A. The nucleolus surface is interpreted to contain a complex made up of protein, RNA, and primarily DNA, to be devoid of sialic acid and hyaluronic acid, and not to bind concanavalin A.  相似文献   

17.
A stereospecific enzyme activity capable of cleaving the amide bond of the synthetic substrate N-benzoyl-D-arginine-p-nitroanilide (D-BAPA) has been found in all aerobic and anaerobic members of the family Bacillaceae tested by us. Cells of nonsporeforming gram-positive or gram-negative bacteria contain a hydrolase activity stereospecific to N-benzoyl-L-arginine-p-nitroanilide. The D-BAPA-hydrolyzing enzymes (D-BAPAases) of mid-logarithmic-phase cells of Bacillus subtilis 168 and B. cereus T were compared. These enzymes had the same molecular weight of approximately 66,000 in gel filtration and the same electrophoretic mobility after electrophoresis on polyacrylamide gels. The D-BAPAases of B. subtilis 168 and B. cereus T differed in the effect of inhibitors on enzymatic activity. While both hydrolases were inhibited by tosyl-L-lysine chloromethyl ketone and tosyl-L-arginine-methyl ester as well as leupeptin, only the D-BAPAase of B. cereus T was inhibited by p-chloromercuribenzene sulfonic acid. The D-BAPAases of B. subtilis and B. cereus T had a Michaelis constant for D-BAPA of 2.9 x 10(-5) M and 1.4 x 10(-4) M, respectively. D-BAPAase is an intracellular enzyme localized in the protoplast (80 to 90% in soluble form in the cytoplasm). The ability to cleave D-BAPA is suggested as an additional chemotaxonomic characteristic of sporeforming bacteria of the genera Bacillus and Clostridium.  相似文献   

18.
The glycosylation level of the pacA-encoded acid phosphatase secreted by Aspergillus nidulans was reduced in strains pabaA1 pyroA4and pabaA1 pyroA4 pyrG89, compared to strains carrying these mutations singly. The molecular mass of the enzyme secreted by the triple mutant grown at pH 5.0 was 105 and 45 kDa as determined by exclusion chromatography and SDS-PAGE, respectively. In contrast, the pabaA1 strain secreted acid phosphatases of 119 and 62 kDa. The enzyme also had an altered electrophoretic mobility and glycosylation had a protective effect against its heat inactivation. Thus, this combination of mutants alters glycosylation of the enzyme, leading to changes in their structural properties. In spite of this, no deviation was observed in the apparent optimum pH and Michaelis kinetics for enzymatic hydrolysis of p-nitrophenyl phosphate or alpha-naphthyl phosphate.  相似文献   

19.
Phenylethanolamine N-methyltransferase was purified from rat and cow adrenal glands. The enzymes from the two species have the same molecular weight of 31,000, but differ in electrophoretic mobility. During polyacrylamide gel electrophoresis, the rat form migrates faster than the bovine form. Antibodies to bovine enzyme precipitated equally well the rat and cow form of the enzyme, but antibodies against rat enzyme precipitated poorly the bovine form. In contrast, both antibodies recognized a similar protein in the in vitro translation products of poly(A+)mRNA isolated from cow adrenal glands. The results suggest that the primary protein structure of rat and bovine enzyme is similar and that differences in electrophoretic mobility are due to posttranslational modification of the enzyme molecule.  相似文献   

20.
The inducible beta-lactamase from Pseudomonas aeruginosa NCTC 8203 and the constitutive beta-lactamase from strain 1822 S/H have been isolated and compared. These two enzymes are apparently periplasmic since they are released by freezing and thawing. They resemble each other closely in their molecular weights, amino acid composition, isoelectric points and electrophoretic mobility as well as in their catalytic properties, and they may be identical. Neither enzyme contains a free thiol group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号