首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above‐ and belowground linkages that regulate soil organic carbon dynamics and C‐balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top‐predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum‐polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above‐ and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands  相似文献   

2.
The structure and functioning of decomposer systems heavily relies on soil moisture. However, this has been primarily studied in temperate ecosystems; little is known about how soil moisture affects the microfaunal food web in tropical regions. This lack of knowledge is surprising, since the microfaunal food web controls major ecosystem processes. To evaluate the role of precipitation in the structure of soil food web components (i.e., microorganisms and testate amoebae), we excluded water input by rain in montane rainforests at different altitudes in Ecuador. Rain exclusion strongly reduced microbial biomass and respiration by about 50?%, and fungal biomass by 23?%. In testate amoebae, rain exclusion decreased the density of live cells by 91?% and caused a shift in species composition at each of the altitudes studied, with ergosterol concentrations, microbial biomass, and water content explaining 25?% of the variation in species data. The results document that reduced precipitation negatively affects soil microorganisms, but that the response of testate amoebae markedly exceeds that of bacteria and fungi. This suggests that, in addition to food, low precipitation directly affects the community structure of testate amoebae, with the effect being more pronounced at lower altitudes. Overall, the results show that microorganisms and testate amoebae rapidly respond to a reduction in precipitation, with testate amoebae—representatives of higher trophic levels—being more sensitive. The results imply that precipitation and soil moisture in tropical rainforests are the main factors regulating decomposition and nutrient turnover.  相似文献   

3.
A soil community food web model was used to improve the understanding of what factors govern the mineralisation of nutrients and carbon and the decay of dead organic matter. The model derives the rates of C and N mineralisation by organisms by splitting their uptake rate of food resources into a rate at which faeces or prey remains are added to detritus, a rate at which elements are incorporated into biomass, and a rate at which elements are released by organisms as inorganic compounds. The functioning of soil organisms in the mineralisation of C and N was modelled in the soil horizon of a Scots pine forest. The organic horizon was divided into three distinct layers, representing successive stages of decay, i.e. litter, fragmented litter, and humus. Each of the layers had a different, quantitative, biota composition. For each layer the annual C and N mineralisation rates were simulated and compared to observed C and N mineralisation rates from organic matter in stratified litterbags. Simulated C and N mineralisation was relatively close to measured losses of C and N, but the fit was not perfect. Discrepancies between the observed and predicted mineralisation rates are discussed in terms of variation in model parameter values of those organisms that showed the highest contribution to mineralisation rates. The measured, and by the model predicted, significant decrease in mineralisation rates down the profile was not explained by the biomass of the primary decomposers and only partly by the total food web biomass. Modelling results indicated that indirect effects of soil fauna, due to trophic interactions with their resources, are an important explanatory factor. In addition, the analyses suggest that community food web structure is an important factor in the regulation of nutrient mineralisation. The model provided the means to evaluate the contribution of functionally defined groups of organisms, structured in a detrital food web, to losses of C and N from successive decay stages.  相似文献   

4.
Peatlands cover 3% of the earth’s land surface but contain 30% of the world’s soil carbon pool. Microbial communities constitute a crucial detrital food web for nutrient and carbon cycling in peatlands. Heterotrophic protozoans are considered top predators in the microbial food web; however, they are not yet well understood. In this study, we investigated seasonal dynamics in the community and the trophic structure of testate amoebae in four peatlands. Testate amoebae density and biomass in August were significantly higher than those in May and October. The highest density, 6.7 × 104 individual g−1 dry moss, was recorded in August 2014. The highest biomass, 7.7 × 102 μg C g−1 dry moss, was recorded in August 2013. Redundancy analyses showed that water-table depth was the most important factor, explaining over one third of the variance in fauna communities in all sampled seasons. High trophic position taxa dominated testate amoebae communities. The Shannon diversity index and community size structure index declined from August to October in 2013 and from May to October in 2014. These seasonal patterns of testate amoebae indicated the seasonal variations of the peatlands’ microbial food web and are possibly related to the seasonal carbon dynamics in Northeast Chinese peatlands.  相似文献   

5.
模拟大气氮沉降对中国森林生态系统影响的研究进展   总被引:3,自引:0,他引:3  
人类活动加剧了活性氮的生产和排放,并导致氮沉降日益增加并全球化。目前,人类活动对全球氮循环的干扰已经超出了地球系统安全运行的界限。中国已成为全球氮沉降的高发区域,高氮沉降已经威胁到生态系统的健康和安全,并成为生态文明建设过程中亟待理清和解决的热点问题。对国际上和中国森林生态系统模拟氮沉降研究的概况进行了综述,并从生物学和非生物学两大过程重点阐述模拟氮沉降增加对中国主要森林生态系统影响的研究进展。中国自2000年以后才开始重视大气氮沉降产生的生态环境问题,中国科学院华南植物园在国内森林生态系统模拟氮沉降试验研究上做出了开创性的贡献。模拟氮沉降研究表明,持续高氮输入将会显著改变森林生态系统的结构和功能,并威胁生态系统的健康发展,特别是处于氮沉降热点区域的中国中南部。森林生态系统的氮沉降效应依赖于系统的氮状态、土地利用历史、气候特征、林型和林龄等。最后,对未来的研究提出了一些建议,包括加强长期跟踪研究和不同气候带站点之间的联网研究,特别是在森林生态系统对长期氮沉降响应与适应的过程机制、地下碳氮吸存潜力研究、以及与其他全球变化因子的耦合研究等方面,以期为森林生态系统的可持续发展提供理论基础和管理依据。  相似文献   

6.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C‐rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivity of surface soil C pools and fluxes to different litter inputs. After only 2 years of treatment, doubling litterfall inputs increased surface soil C concentrations by 31%, removing litter from the forest floor drove a 26% reduction over the same time period, and these changes in soil C concentrations were associated with variations in dissolved organic matter fluxes, fine root biomass, microbial biomass, soil moisture, and nutrient fluxes. However, the litter manipulations had only small effects on soil organic C (SOC) chemistry, suggesting that changes in C cycling, nutrient cycling, and microbial processes in response to litter manipulation reflect shifts in the quantity rather than quality of SOC. The manipulation also affected soil CO 2 fluxes; the relative decline in CO 2 production was greater in the litter removal plots (?22%) than the increase in the litter addition plots (+15%). Our analysis showed that variations in CO 2 fluxes were strongly correlated with microbial biomass pools, soil C and nitrogen (N) pools, soil inorganic P fluxes, dissolved organic C fluxes, and fine root biomass. Together, our data suggest that shifts in leaf litter inputs in response to localized human disturbances and global environmental change could have rapid and important consequences for belowground C storage and fluxes in tropical rain forests, and highlight differences between tropical and temperate ecosystems, where belowground C cycling responses to changes in litterfall are generally slower and more subtle.  相似文献   

7.
We investigated the role of carbon, nitrogen and phosphorus as limiting factors of microorganisms and microbial grazers (testate amoebae) in a montane tropical rain forest in southern Ecuador. Carbon (as glucose), nitrogen (as NH4NO3) and phosphorus (as NaH2PO4) were added separately and in combination bimonthly to experimental plots for 20 months. By adding glucose and nutrients we expected to increase the growth of microorganisms as the major food resource of testate amoebae. The response of microorganisms to experimental treatments was determined by analysing microbial biomass (SIR), fungal biomass and microbial community composition as measured by phospholipid fatty acids (PLFAs). We hypothesized that the response of testate amoebae is closely linked to that of microorganisms. Carbon addition strongly increased ergosterol concentration and, less pronounced, the amount of linoleic acid as fungal biomarker, suggesting that saprotrophic fungi are limited by carbon. Microbial biomass and ergosterol concentrations reached a maximum in the combined treatment with C, N and P indicating that both N and P also were in short supply. In contrast to saprotrophic fungi and microorganisms in total, testate amoebae suffered from the addition of C and reached maximum density by the addition of N. The results indicate that saprotrophic fungi in tropical montane rain forests are mainly limited by carbon whereas gram positive and negative bacteria benefit from increased availability of P. Testate amoebae suffered from increased dominance of saprotrophic fungi in glucose treatments but benefited from increased supply of N. The results show that testate amoebae of tropical montane rain forests are controlled by bottom–up forces relying on specific food resources rather than the amount of bacterial biomass with saprotrophic fungi functioning as major antagonists. Compared to temperate systems microbial food webs in tropical forests therefore may be much more complex than previously assumed with trophic links being rather specific and antagonistic interactions overriding trophic interactions.  相似文献   

8.
Livestock grazing activities potentially alter ecosystem carbon (C) and nitrogen (N) cycles in grassland ecosystems. Despite the fact that numerous individual studies and a few meta‐analyses had been conducted, how grazing, especially its intensity, affects belowground C and N cycling in grasslands remains unclear. In this study, we performed a comprehensive meta‐analysis of 115 published studies to examine the responses of 19 variables associated with belowground C and N cycling to livestock grazing in global grasslands. Our results showed that, on average, grazing significantly decreased belowground C and N pools in grassland ecosystems, with the largest decreases in microbial biomass C and N (21.62% and 24.40%, respectively). In contrast, belowground fluxes, including soil respiration, soil net N mineralization and soil N nitrification increased by 4.25%, 34.67% and 25.87%, respectively, in grazed grasslands compared to ungrazed ones. More importantly, grazing intensity significantly affected the magnitude (even direction) of changes in the majority of the assessed belowground C and N pools and fluxes, and C : N ratio as well as soil moisture. Specifically,light grazing contributed to soil C and N sequestration whereas moderate and heavy grazing significantly increased C and N losses. In addition, soil depth, livestock type and climatic conditions influenced the responses of selected variables to livestock grazing to some degree. Our findings highlight the importance of the effects of grazing intensity on belowground C and N cycling, which may need to be incorporated into regional and global models for predicting effects of human disturbance on global grasslands and assessing the climate‐biosphere feedbacks.  相似文献   

9.
Soil extracellular enzymes mediate organic matter turnover and nutrient cycling yet remain little studied in one of Earth’s most rapidly changing, productive biomes: tropical forests. Using a long-term leaf litter and throughfall manipulation, we explored relationships between organic matter (OM) inputs, soil chemical properties and enzyme activities in a lowland tropical forest. We assayed six hydrolytic soil enzymes responsible for liberating carbon (C), nitrogen (N) and phosphorus (P), calculated enzyme activities and ratios in control plots versus treatments, and related these to soil biogeochemical variables. While leaf litter addition and removal tended to increase and decrease enzyme activities per gram soil, respectively, shifts in enzyme allocation patterns implied changes in relative nutrient constraints with altered OM inputs. Enzyme activity ratios in control plots suggested strong belowground P constraints; this was exacerbated when litter inputs were curtailed. Conversely, with double litter inputs, increased enzymatic investment in N acquisition indicated elevated N demand. Across all treatments, total soil C correlated more strongly with enzyme activities than soluble C fluxes, and enzyme ratios were sensitive to resource stoichiometry (soil C:N) and N availability (net N mineralization). Despite high annual precipitation in this site (MAP ~5 m), soil moisture positively correlated with five of six enzymes. Our results suggest resource availability regulates tropical soil enzyme activities, soil moisture plays an additional role even in very wet forests, and relative investment in C, N and P degrading enzymes in tropical soils will often be distinct from higher latitude ecosystems yet is sensitive to OM inputs.  相似文献   

10.
Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ 13C and δ 15N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.  相似文献   

11.
The community structure of testate amoebae inhabiting different microhabitats (soil and tree-moss) within a tropical forest biome in Nameri National Park, northeastern India, was investigated. A total of 33 testate amoebae species belonging to 13 genera were identified. Species belonging to the class Lobosea constituted 73% of total testate amoebae density in the soil habitat, whereas the class Filosea constituted the most dominant forms (58%) in the moist tree-moss habitat. The relative abundance of species was higher in the tree-moss habitat compared to the soil habitats of the forest. Although multivariate analysis suggested a significant difference in assemblage patterns between the habitats, the turnover in species (i.e., beta diversity) was insignificant. Species accumulation curves (SAC) constructed using both parametric and non-parametric species richness estimators revealed that the asymptote of species richness was achieved by a low number of sample replicates in both habitats. The temperature and pH of the substratum on testate amoebae distribution patterns suggest the importance of additional background factors on testate amoebae community structure. Further studies involving more biotopes, seasons, and trophic interactions are recommended to document a complete record of testate amoebae diversity and their interactions with environmental gradients in the tropical forest biomes of northeastern India.  相似文献   

12.
To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine‐root production vs. root respiration trade‐off; and an above‐ vs. belowground trade‐off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature‐driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil respiration, and its responses to climate in forest ecosystems and are, therefore, valuable for terrestrial carbon simulations and projections.  相似文献   

13.
14.
Despite the major importance of soil biota in nutrient and energy fluxes, interactions in soil food webs are poorly understood. Here we provide an overview of recent advances in uncovering the trophic structure of soil food webs using natural variations in stable isotope ratios. We discuss approaches of application, normalization and interpretation of stable isotope ratios along with methodological pitfalls. Analysis of published data from temperate forest ecosystems is used to outline emerging concepts and perspectives in soil food web research. In contrast to aboveground and aquatic food webs, trophic fractionation at the basal level of detrital food webs is large for carbon and small for nitrogen stable isotopes. Virtually all soil animals are enriched in 13C as compared to plant litter. This ‘detrital shift’ likely reflects preferential uptake of 13C‐enriched microbial biomass and underlines the importance of microorganisms, in contrast to dead plant material, as a major food resource for the soil animal community. Soil organic matter is enriched in 15N and 13C relative to leaf litter. Decomposers inhabiting mineral soil layers therefore might be enriched in 15N resulting in overlap in isotope ratios between soil‐dwelling detritivores and litter‐dwelling predators. By contrast, 13C content varies little between detritivores in upper litter and in mineral soil, suggesting that they rely on similar basal resources, i.e. little decomposed organic matter. Comparing vertical isotope gradients in animals and in basal resources can be a valuable tool to assess trophic interactions and dynamics of organic matter in soil. As indicated by stable isotope composition, direct feeding on living plant material as well as on mycorrhizal fungi is likely rare among soil invertebrates. Plant carbon is taken up predominantly by saprotrophic microorganisms and channelled to higher trophic levels of the soil food web. However, feeding on photoautotrophic microorganisms and non‐vascular plants may play an important role in fuelling soil food webs. The trophic niche of most high‐rank animal taxa spans at least two trophic levels, implying the use of a wide range of resources. Therefore, to identify trophic species and links in food webs, low‐rank taxonomic identification is required. Despite overlap in feeding strategies, stable isotope composition of the high‐rank taxonomic groups reflects differences in trophic level and in the use of basal resources. Different taxonomic groups of predators and decomposers are likely linked to different pools of organic matter in soil, suggesting different functional roles and indicating that trophic niches in soil animal communities are phylogenetically structured. During last two decades studies using stable isotope analysis have elucidated the trophic structure of soil communities, clarified basal food resources of the soil food web and revealed links between above‐ and belowground ecosystem compartments. Extending the use of stable isotope analysis to a wider range of soil‐dwelling organisms, including microfauna, and a larger array of ecosystems provides the perspective of a comprehensive understanding of the structure and functioning of soil food webs.  相似文献   

15.
Soils deliver important ecosystem services, such as nutrient provision for plants and the storage of carbon (C) and nitrogen (N), which are greatly impacted by drought. Both plants and soil biota affect soil C and N availability, which might in turn affect their response to drought, offering the potential to feed back on each other’s performance. In a greenhouse experiment, we compared legacy effects of repeated drought on plant growth and the soil food web in two contrasting land-use systems: extensively managed grassland, rich in C and with a fungal-based food web, and intensively managed wheat lower in C and with a bacterial-based food web. Moreover, we assessed the effect of plant presence on the recovery of the soil food web after drought. Drought legacy effects increased plant growth in both systems, and a plant strongly reduced N leaching. Fungi, bacteria, and their predators were more resilient after drought in the grassland soil than in the wheat soil. The presence of a plant strongly affected the composition of the soil food web, and alleviated the effects of drought for most trophic groups, regardless of the system. This effect was stronger for the bottom trophic levels, whose resilience was positively correlated to soil available C. Our results show that plant belowground inputs have the potential to affect the recovery of belowground communities after drought, with implications for the functions they perform, such as C and N cycling.  相似文献   

16.
《植物生态学报》2017,41(10):1113
Nearly all tree species develop symbiotic relationships with either arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi to acquire nutrients from soils, and hence influence soil carbon (C) and nitrogen (N) cycles in terrestrial ecosystems. It is crucial to understand the differences in soil C and N cycles between AM and EM forests and the underlying mechanisms. In this review, we first compared the differences in the soil C and N cycles between AM and EM forests, and synthesized the underlying mechanisms from perspectives of the inputs, stabilization, and outputs of soil C and N in forest ecosystems. We also compared the responses of soil C and N cycles between AM and EM forests to global changes. In this field, one major research priority is comparing the structure and function (including the soil C and N cycles) between AM and EM forest ecosystems to provide theoretical basis and solid data for improving forest productivity and ecosystem services. The second research focus is deepening the understanding of the effects of interactions between aboveground litter and belowground mycorrhiza and free-living microbes on soil C and N cycles to reveal the potential underlying mechanisms in forests with different mycorrhizal symbioses. Third, the research methodology and new techniques need refining and applying to explicitly focus on scaling up the fine-scale measurements to better expound and predict the C and N cycles in forest ecosystems. Finally, more studies on the stability of soil organic matter among different mycorrhizal forests are needed to precisely assess responses of the structure and function of forest ecosystems to global changes.  相似文献   

17.
Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the ForCent model, which integrates above‐ and belowground processes. The model was able to represent decadal‐scale measurements in soil C stocks, mean residence times, fluxes, and responses to a warming and N addition experiment. The calibrated model then simulated the longer term impacts of warming and N deposition on the distribution of forest carbon stocks. For simulation to 2030, soil warming resulted in a loss of soil organic matter (SOM), decreased allocation to belowground biomass, and gain of aboveground carbon, primarily in large wood, with an overall small gain in total system carbon. Simulated nitrogen addition resulted in a small increase in belowground carbon pools, but a large increase in aboveground large wood pools, resulting in a substantial increase in total system carbon. Combined warming and nitrogen addition simulations showed a net gain in total system carbon, predominately in the aboveground carbon pools, but offset somewhat by losses in SOM. Hence, the impact of continuation of anthropogenic N deposition on the hardwood forests of the northeastern United States may exceed the impact of warming in terms of total ecosystem carbon stocks. However, it should be cautioned that these simulations do not include some climate‐related processes, different responses from changing tree species composition. Despite uncertainties, this effort is among the first to use decadal‐scale observations of soil carbon dynamics and results of multifactor manipulations to calibrate a model that can project integrated aboveground and belowground responses to nitrogen and climate changes for subsequent decades.  相似文献   

18.
Forest carbon cycles play an important role in efforts to understand and mitigate climate change. Large amounts of carbon (C) are stored in deep mineral forest soils, but are often not considered in accounting for global C fluxes because mineral soil C is commonly thought to be relatively stable. We explore C fluxes associated with forest management practices by examining existing data on forest C fluxes in the northeastern US. Our findings demonstrate that mineral soil C can play an important role in C emissions, especially when considering intensive forest management practices. Such practices are known to cause a high aboveground C flux to the atmosphere, but there is evidence that they can also promote comparably high and long‐term belowground C fluxes. If these additional fluxes are widespread in forests, recommendations for increased reliance on forest biomass may need to be reevaluated. Furthermore, existing protocols for the monitoring of forest C often ignore mineral soil C due to lack of data. Forest C analyses will be incomplete until this problem is resolved.  相似文献   

19.
The complete nitrogen cycle of an N-saturated spruce forest ecosystem   总被引:1,自引:0,他引:1  
Long-term nitrogen deposition into forest ecosystems has turned many forests in Central Europe and North America from N-limited to N-saturated systems, with consequences for climate as well as air and groundwater quality. However, complete quantification of processes that convert the N deposited and contributed to ecosystem N cycling is scarce. In this study, we provide the first complete quantification of external and internal N fluxes in an old-growth spruce forest, the Höglwald, Bavaria, Germany, exposed to high chronic N deposition. In this forest, N cycling is dominated by high rates of mineralisation of soil organic matter, nitrification and immobilisation of ammonium and nitrate into microbial biomass. The amount of ammonium available is sufficient to cover the entire N demand of the spruce trees. The data demonstrate the existence of a highly dynamic internal N cycle within the soil, driven by growth and death of the microbial biomass, which turns over approximately seven times each year. Although input and output fluxes are of high environmental significance, they are low compared to the internal fluxes mediated by microbial activity.  相似文献   

20.
We investigated the response of soil microbial communities in tropical ecosystems to increased nutrient deposition, such as predicted by anthropogenic change scenarios. Moderate amounts of nitrogen and phosphorus and their combination were added along an altitudinal transect. We expected microorganisms and microbial grazers (testate amoebae) to significantly respond to nutrient additions with the effect increasing with increasing altitude and with duration of nutrient additions. Further, we expected nutrients to alter grazer–prey interrelationships. Indeed, nutrient additions strongly altered microbial biomass (MB) and community structure as well as the community structure of testate amoebae. The response of microorganisms varied with both altitude and duration of nutrient addition. The results indicate that microorganisms are generally limited by N, but saprotrophic fungi also by P. Also, arbuscular mycorrhizal fungi benefited from N and/or P addition. Parallel to MB, testate amoebae benefited from the addition of N but were detrimentally affected by P, with the addition of P negating the positive effect of N. Our data suggests that testate amoeba communities are predominantly structured by abiotic factors and by antagonistic interactions with other microorganisms, in particular mycorrhizal fungi, rather than by the availability of prey. Overall, the results suggest that the decomposer system of tropical montane rainforests significantly responds to even moderate changes in nutrient inputs with the potential to cause major ramifications of the whole ecosystem including litter decomposition and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号