首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have characterised orthologues of the genes fork head and goosecoid in the gastropod Patella vulgata. In this species, the anterior-posterior (AP) axis is determined just before gastrulation, and leads to the specification of two mesodermal components on each side of the presumptive endoderm, one anterior (ectomesoderm), and one posterior (endomesoderm). Both fork head and goosecoid are expressed from the time the AP axis is specified, up to the end of gastrulation. fork head mRNA is detected in the whole endoderm, as well as in the anterior mesoderm, whereas goosecoid is only expressed anteriorly, in the three germ layers. The two genes are thus coexpressed in the anterior mesoderm, suggesting the latter's homology with vertebrate prechordal mesoderm. In addition, since prechordal plate is known to belong to an anterior, so called "head organiser", and since its inductive role is dependent on the function of the vertebrate fork head and goosecoid orthologues, we further suggest that the anterior mesoderm may also have a role in anterior inductive patterning in Spiralia. Finally, we propose that a mode of axial development involving two organisers, one anterior and one posterior, is ancestral to the Bilateria, and that both organisers evolved from the single head organiser of a putative hydra-like ancestor.  相似文献   

2.
A fate map has been constructed for Phoronis vancouverensis. The animal pole of the egg gives rise to the apical plate in the hood of the actinotroch larva. The vegetal pole of the egg marks the site of gastrulation. During the initiation of gastrulation the cells of the animal pole of the embryo are directly opposite those at the vegetal pole of the embryo. The plane of the first cleavage always goes through the animal-vegetal pole of the egg. In about 70% of the cases the plane of the first cleavage is perpendicular to the future anterior-posterior axis of the actinotroch larva; in the remaining cases the plane of the first cleavage is either oblique with reference to, or occurs along, the future anterior-posterior axis of the larva. Following gastrulation catecholamine-containing cells first make their appearance in the apical plate and gut cells first produce esterase. The timing of regional specification in these embryos has been examined by isolating animal or vegetal, anterior or posterior, or lateral regions at different time periods between the initiation of cleavage and gastrulation and examining their ability to differentiate. Animal halves isolated from early cleavage through late blastula stages do not gastrulate and do not form catecholamine-containing cells. When animal halves are isolated with endoderm during gastrulation, they differentiate catecholamine-containing cells. Vegetal halves isolated at the 8- to 16-cell stage gastrulate and form normal actinotroch larvae with esterase-positive gut and catecholamine-containing apical plate cells. When this same region is isolated at blastula stages it does not gastrulate and does not differentiate these cell types. Vegetal halves isolated during gastrulation subsequently form esterase-positive gut cells, but they do not form catecholamine-containing apical plate cells. When presumptive anterior, posterior, or lateral halves are isolated from early cleavage through blastula stages, each half forms a normal actinotroch larva. Lateral halves isolated during gastrulation also form normal larvae. Anterior halves isolated during late gastrulation differentiate only the anterior end of the actinotroch larva. These isolates have a hood with catecholamine-containing apical plate cells and the first part of an esterase-positive gut but lack the anlagen of the intestine and protonephridia. Posterior halves isolated during late gastrulation differentiate only the posterior end of the actinotroch which lacks a hood with catecholamine-containing cells but has an esterase-positive gut, protonephridia, and the anlagen of the intestine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Summary These experiments were done in order to define the role that polarity plays during embryogenesis in hydrozoans.Parts of hydrozoan embryos isolated at different developmental stages from early cleavage to postgastrula will regulate to form normal planulae. During this process, the original anterior-posterior axis of the part is conserved. In normal embryos the posterior pole of the anterior-posterior axis is congruent with the site where the polar bodies are given off and with the site where the first cleavage is initiated. By centrifuging fertilized eggs, it is possible to create embryos in which the first cleavage initiation site does not correspond to the site where the polar bodies are given off. In these embryos the posterior pole of the anterior-posterior axis corresponds to the first cleavage initiation site. When parts of these embryos are isolated at different stages they also regulate to form normal planulae. The axial properties of these planulae are determined by the site of first cleavage initiation.The interactions between regions of the embryo with different axial properties were studied by grafting together parts in such a way as to create embryos with abnormal axial arrangements. Following gastrulation interactions take place between the grafted parts leading to the formation of normal planulae with a new set of axial properties.Blastula stage embryos can be dissociated into single cells and the cells can be reaggregated. These reaggregates form normal planulae. Polarity can be entrained in the reaggregates by grafting a small piece of tissue from any part of an intact blastula to the reaggregate. These cells organize the formation of an axis of symmetry with an appropriate orientation with respect to the graft.  相似文献   

4.
The evolutionary origin of the anterior-posterior and the dorsoventral body axes of Bilateria is a long-standing question. It is unclear how the main body axis of Cnidaria, the sister group to the Bilateria, is related to the two body axes of Bilateria. The conserved antagonism between two secreted factors, BMP2/4 (Dpp in Drosophila) and its antagonist Chordin (Short gastrulation in Drosophila) is a crucial component in the establishment of the dorsoventral body axis of Bilateria and could therefore provide important insight into the evolutionary origin of bilaterian axes. Here, we cloned and characterized two BMP ligands, dpp and GDF5-like as well as two secreted antagonists, chordin and gremlin, from the basal cnidarian Nematostella vectensis. Injection experiments in zebrafish show that the ventralizing activity of NvDpp mRNA is counteracted by NvGremlin and NvChordin, suggesting that Gremlin and Chordin proteins can function as endogenous antagonists of NvDpp. Expression analysis during embryonic and larval development of Nematostella reveals asymmetric expression of all four genes along both the oral-aboral body axis and along an axis perpendicular to this one, the directive axis. Unexpectedly, NvDpp and NvChordin show complex and overlapping expression on the same side of the embryo, whereas NvGDF5-like and NvGremlin are both expressed on the opposite side. Yet, the two pairs of ligands and antagonists only partially overlap, suggesting complex gradients of BMP activity along the directive axis but also along the oral-aboral axis. We conclude that a molecular interaction between BMP-like molecules and their secreted antagonists was already employed in the common ancestor of Cnidaria and Bilateria to create axial asymmetries, but that there is no simple relationship between the oral-aboral body axis of Nematostella and one particular body axis of Bilateria.  相似文献   

5.
We cloned and analyzed the expression of a caudal homologue (PvuCdx) during the early development of the marine gastropod, Patella vulgata. PvuCdx is expressed at the onset of gastrulation in the ectodermal cells that constitute the posterior edge of the blastopore, as well as in the paired mesentoblasts, the stem cells that generate the posterior mesoderm of the trochophore larva. During larval stages, PvuCdx is expressed in the posterior neurectoderm of the larva, as well as in part of the mesoderm. This is the first report of the expression of a caudal gene in a lophotrochozoan species. The striking similarities with the expression of caudal in other organisms, such as chordates, suggest that a posterior expression of caudal is ancestral to Bilateria.  相似文献   

6.
The process of embryogenesis is described for the inarticulate brachiopod Discinisca strigata of the family Discinidae. A fate map has been constructed for the early embryo. The animal half of the egg forms the dorsal ectoderm of the apical and mantle lobes. The vegetal half forms mesoderm and endoderm and is the site of gastrulation; it also forms the ectoderm of the ventral regions of the apical and mantle lobes of the larva. The plane of the first cleavage goes through the animal-vegetal axis of the egg along the future plane of bilateral symmetry of the larva. The timing of regional specification in these embryos was examined by isolating animal, vegetal, or lateral regions at different times from the 2-cell stage through gastrulation. Animal halves isolated at the 8-cell and blastula stages formed an epithelial vesicle and did not gastrulate. When these halves were isolated from blastulae they formed the cell types typical of apical and mantle lobes. Vegetal halves isolated at all stages gastrulated and formed a more or less normal larva; the only defect these larvae had was the lack of an apical tuft, which normally forms from cells at the animal pole of the embryo. When lateral isolates were created at all developmental stages, these halves gastrulated. Cuts which separated presumptive anterior and posterior regions generated isolates at the 4-cell and blastula stages that formed essentially normal larvae; however, at the midgastrula stage these halves formed primarily anterior or posterior structures indicating that regional specification had taken place along the anterior-posterior axis. The plane of the first cleavage, which predicts the plane of bilateral symmetry, can be shifted by either changing the cleavage pattern that generates the bilateral 16-cell blastomere configuration or by isolating embryo halves prior to, or during, the 16-cell stage. These results indicate that while the plane of the first cleavage predicts the axis of bilateral symmetry, the axis is not established until the fourth cleavage. The development of Discinisca is compared to development in the inarticulate brachiopod Glottidia of the family Lingulidae and to Phoronis in the phylum Phoronida.  相似文献   

7.
Bilateral symmetry is a hallmark of the Bilateria. It is achieved by the intersection of two orthogonal axes of polarity: the anterior-posterior (A-P) axis and the dorsal-ventral (D-V) axis. It is widely thought that bilateral symmetry evolved in the common ancestor of the Bilateria. However, it has long been known that members of the phylum Cnidaria, an outgroup to the Bilateria, also exhibit bilateral symmetry. Recent studies have examined the developmental expression of axial patterning genes in members of the phylum Cnidaria. Hox genes play a conserved role in patterning the A-P axis of bilaterians. Hox genes are expressed in staggered axial domains along the oral-aboral axis of cnidarians, suggesting that Hox patterning of the primary body axis was already present in the cnidarian-bilaterian ancestor. Dpp plays a conserved role patterning the D-V axis of bilaterians. Asymmetric expression of dpp about the directive axis of cnidarians implies that this patterning system is similarly ancient. Taken together, these result imply that bilateral symmetry had already evolved before the Cnidaria diverged from the Bilateria.  相似文献   

8.
Gastrulation in higher vertebrate species classically commences with the generation of mesoderm cells in the primitive streak by epithelio-mesenchymal transformation of epiblast cells. However, the primitive streak also marks, with its longitudinal orientation in the posterior part of the conceptus, the anterior-posterior (or head-tail) axis of the embryo. Results obtained in chick and mouse suggest that signals secreted by the hypoblast (or visceral endoderm), the extraembryonic tissue covering the epiblast ventrally, antagonise the mesoderm induction cascade in the anterior part of the epiblast and thereby restrict streak development to the posterior pole (and possibly initiate head development anteriorly). In this paper we took advantage of the disc-shape morphology of the rabbit gastrula for defining the expression compartments of the signalling molecules Cerberus and Dickkopf at pre-gastrulation and early gastrulation stages in a mammal other than the mouse. The two molecules are expressed in novel expression compartments in a complementary fashion both in the hypoblast and in the emerging primitive streak. In loss-of-function experiments, carried out in a New-type culturing system, hypoblast was removed prior to culture at defined stages before and at the beginning of gastrulation. The epiblast shows a stage-dependent and topographically restricted susceptibility to express Brachyury, a T-box gene pivotal for mesoderm formation, and to transform into (histologically proven) mesoderm. These results confirm for the mammalian embryo that the anterior-posterior axis of the conceptus is formed first as a molecular prepattern in the hypoblast and then irrevocably fixed, under the control of signals secreted from the hypoblast, by epithelio-mesenchymal transformation (primitive streak formation) in the epiblast.Edited by D. Tautz  相似文献   

9.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

10.
Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance.  相似文献   

11.
In molluscs, the 3D vegetal blastomere acts as a developmental signaling center, or organizer, and is required to establish bilateral symmetry in the embryo. 3D is similar to organizing centers in other metazoans, but detailed comparisons are difficult, in part because its organizing function is poorly understood. To elucidate 3D function in a standardized fashion, we used monensin and brefeldin A (BFA) to rapidly and reversibly interfere with protein processing and secretion, thereby inhibiting the signaling interactions that underlie its specification and patterning. In the gastropods, Patella vulgata and Lymnaea stagnalis, the polyplacophoran, Mopalia muscosa, and the scaphopod, Antalis entalis, treatments initiated before the organizer-dependent onset of bilateral cleavage resulted in radialization of subsequent development. In radialized P. vulgata, L. stagnalis, and M. muscosa, organizer specification was blocked, and embryos failed to make the transition to bilateral cleavage. In all four species, the subsequent body plan was radially symmetric and was similarly organized about a novel aboral–oral axis. Our results demonstrate that brefeldin A (BFA) and monensin can be used to inhibit 3D’s organizing function in a comparative fashion and that, at least in M. muscosa, the organizer-dependent developmental architecture of the embryo predicts subsequent patterns of morphogenetic movements in gastrulation and, ultimately, the layout of the adult body plan.  相似文献   

12.
13.
The paper is an attempt to attack the old problem of the origin of Bilateria by the methods of evolutionary tetrad (i.e. combination of comparative anatomy, comparative embryology, paleontology, and molecular biology). Three groups of theories of classical comparative anatomy (planulod-turbellarian, archicoelomate, and metameric) are discussed. Comparative embryology brings out clearly that the ventral side of embryo comes from the blastoporal region in all groups of Bilateria (except Chordata, where the blastoporal region corresponds to the dorsal side that is come out of the upside-down morphology of chordates) and mouth and anus comes from the anterior and posterior ends of elongated blastopore. From the point of view of paleontology, some of vendian metazoans demonstrate transitional conditions between the Radiata and Bilateria. Vendian bilaterians are metameric organisms with normal or asymmetric position of segments and could be pictured as "bilateral coelenterates" creeping on the oral surface. In Cnidaria, the expression of homologues of "Brachyury", "goosecoid", and "fork head" genes are revealed in the circular region around the mouth. In Bilateria, these genes are expressed along the elongated blastopore and around the mouth and anus. These results support the old conception on the amphistomic origin of mouth and anus as well as the homology between the oral disc of cnidarians and ventral side of Bilateria. The combination of four mentioned approaches enables us to propose the conception of the origin of Bilateria from vendian bilateral coelenterates with numerous metameric pouches of gastral cavity. Bilaterian ancestors crawled on the oral disc (= ventral side). These ancestors gave rise to both phanerosoic cnidarians and triploblastic bilaterians. Cnidarian ancestors attached to bottom by the aboral pole with the resulting degradation of aboral nerve ganglion. Bilateral symmetry of anthozoans is considered to be primitive feature for cnidarians. In case of triploblastic Bilateria, the elongated blastopore closed in the middle and subdivided into mouth and anus (amphistomy) and gastral pouches separated from the central part of gastral cavity and transformed to metameric coelomic chambers. The primary bilaterians are supposed to be complicated organisms having coelom and segmentation. The complexity of primary Bilateria provides an explanation for the abundance of highly organized organisms (arthropods, mollusks etc.) in Cambrian time. It is postulated that Ctenophora is the only group recent eumetazoans with primary axial symmetry.  相似文献   

14.
BACKGROUND: When the anterior-posterior axis of the mouse embryo becomes explicit at gastrulation, it is almost perpendicular to the long uterine axis. This led to the belief that the uterus could play a key role in positioning this future body axis. RESULTS: Here, we demonstrate that when the anterior-posterior axis first emerges it does not respect the axes of the uterus but, rather, the morphology of the embryo. Unexpectedly, the emerging anterior-posterior axis is initially aligned not with the long, but the short axis of the embryo. Then whether the embryo develops in vitro or in utero, the anterior-posterior axis becomes aligned with the long axis of embryo just prior to gastrulation. Of three mechanisms that could account for this apparent shift in anterior-posterior axis orientation-cell migration, spatial change of gene expression, or change in embryo shape-lineage tracing studies favor a shape change accompanied by restriction of the expression domain of anterior markers. This property of the embryo must be modulated by interactions with the uterus as ultimately the anterior-posterior and long axes of the embryo align with the left-right uterine axis. CONCLUSIONS: The emerging anterior-posterior axis relates to embryo morphology rather than that of the uterus. The apparent shift in its orientation to align with the long embryonic axis and with the uterus is associated with a change in embryo shape and a refinement of anterior gene expression pattern. This suggests an interdependence between anterior-posterior gene expression, the shape of the embryo, and the uterus.  相似文献   

15.
The Xenopus Brachyury-like Xbra3 gene is a novel T-box gene that is closely associated with Xenopus Brachyury. The expression pattern of Xbra3 during development is similar to that of Xbra. During gastrulation Xbra3 is expressed in the marginal zone, with a gradient of increasing expression from ventral to dorsal. In the early neurula stage Xbra3 is expressed in the notochord and posterior mesoderm, but by the tailbud stage its expression is restricted to the forming tailbud and the posterior portion of the notochord.  相似文献   

16.
17.
18.
19.
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.  相似文献   

20.
The myoplasm of ascidian eggs is a localized cytoplasmic region containing a unique cytoskeletal domain. During ooplasmic segregation, the myoplasm moves first to the vegetal pole and then to the future posterior region of the fertilized egg, where it subsequently enters the muscle cell lineage during cleavage. In the vegetal pole region, the myoplasm defines a developmental center which later controls gastrulation and embryonic axis formation. In the posterior region, the myoplasm defines another developmental center, which specifies muscle cell development. Evidence is described suggesting that the integrity of the myoplasmic cytoskeletal domain is required for normal embryonic functions of the myoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号