首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The purpose of the study was to elucidate the mechanism underlying the enhancement of radiosensitivity to 60Co gamma-irradiation in human hepatoma cell line HepG2 pretreated with gliotoxin. Enhancement of radiotherapy by gliotoxin was investigated in vitro with human hepatoma HepG2 cell line. Apoptosis related proteins were evaluated by Western blotting. Annexin V/PI and reactive oxygen species (ROS) were quantified by Flow Cytometric (FACS) analysis. Gliotoxin (200 ng/ml) combined with radiation (4 Gy) treated cells induced apoptosis. Cells treated with gliotoxin (200 ng/ml) prior to irradiation at 4 Gy induced the expression of bax and nitric oxide (NO). The gliotoxin-irradiated cells also increased caspase-3 activation and ROS. Gadd45a, p38, and nuclear factor kappa B (NFkappaB) activated in irradiated cells was inhibited by Gliotoxin. Specific inhibitors of p38 kinase, SB203580, significantly inhibited NFkappaB activation and increased the cytotoxicity effect in cells exposed to gliotoxin combined with irradiation. However, SB203580 did not suppress the activation of Gadd45a in irradiated cells. Gliotoxin inhibited anti-apoptotic signal pathway involving the activation of Gadd45a-p38-NFkappaB mediated survival pathway that prevent radiation-induced cell death. Therefore, gliotoxin, blocking inflammation pathway and enhancing irradiation-induced apoptosis, is a promising agent to increase the radiotherapy of tumor cells.  相似文献   

2.
3.
Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells   总被引:13,自引:0,他引:13  
Shieh DE  Chen YY  Yen MH  Chiang LC  Lin CC 《Life sciences》2004,74(18):2279-2290
Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible cells. However, the signaling pathway of their apoptotic effects remains undefined. In this study, the cytotoxic effect of emodin on various human hepatoma cell lines was investigated. Results demonstrated that emodin exhibited strongly suppressing effect on HepG2/C3A, PLC/PRF/5, and SK-HEP-1 cells, with the IC(50) value of 42.5, 46.6, and 53.1 microM, respectively. Furthermore, emodin induced apoptosis in HepG2/C3A cells was clearly verified by the appearance of DNA fragmentation and sub-G(1) accumulation. Besides, HepG2/C3A cells were found to be arrested in G(2)/M phase after the cells were treated with 60 microM emodin for 48 h. Moreover, significant increase in the levels of apoptosis-related signals such as p53 (419.3 pg/ml), p21 (437.4 units/ml), Fas (6.6 units/ml), and caspase-3 (35.4 pmol/min) were observed in emodin treated HepG2/C3A cells. Taken together, emodin displays effective inhibitory effects on the growth of various human hepatoma cell lines and stimulates the expression of p53 and p21 that resulted in the cell cycle arrest of HepG2/C3A cells at G(2)/M phase. Results also suggest that emodin-induced apoptosis in HepG2/C3A cells were mediated through the activation of p53, p21, Fas/APO-1, and caspase-3. It implies that emodin could be a useful chemotherapeutical agent for treatment of hepatocellular carcinoma (HCC).  相似文献   

4.
5.
This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 149 μg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.  相似文献   

6.
7.
1-(3′,4′,5′-Trimethoxyphenyl)-3-(3″,4″-dimethoxy-2″-hydroxyphenyl)-propane (DP), a novel synthesized 1,3-diarylpropanes compound, showed growth inhibitory effect on human hepatoma HepG2 cells in a concentration-dependent manner. The growth inhibitory effect of DP on HepG2 cells was associated with microtubule depolymerization, G2/M phase arrest and apoptosis induction. The G2/M phase arrest induced by DP resulted from its microtubule-depolymerizing ability, and DP-treated HepG2 cells finally underwent caspase-dependent apoptosis. DP increased the levels of death receptor 4 (DR4), death receptor 5 (DR5) and pro-apoptotic protein Bax, but decreased the levels of anti-apoptotic protein Bcl-2. Meanwhile, the decrease in the mitochondrial membrane potential (MMP) and the release of cytochrome c from mitochondria were observed in DP-treated HepG2 cells. DP increased the levels of reactive oxygen species (ROS) in HepG2 cells, and antioxidant N-acetylcysteine (NAC) completely blocked DP-induced ROS accumulation and the disruption of the balance between Bax and Bcl-2 proteins, and effectively blocked the decreased MMP and apoptosis, but had no effect on the activation of caspase-8 and the up-regulations of DR4 and DR5 induced by DP. These results suggest that DP induces G2/M phase arrest through interruption of microtubule network followed by the death receptor- and ROS-mediated apoptosis in HepG2 cells.  相似文献   

8.
Based on our recent findings that resveratrol, a natural plant polyphenol found in red grape skins as well as other food products, induces apoptosis via a caspase-independent intrinsic pathway in human lung adenocarcinoma cells, this study is designed to explore whether SB203580, a p38 inhibitor, potentiates the resveratrol-induced apoptosis of human lung adenocarcinoma (A549) cells. We found that pretreatment with SB203580 enhanced the resveratrol-induced apoptosis by accelerating the intrinsic apoptotic pathway including Bax activation, loss of mitochondrial membrane potential, and activation of both caspase-9 and -3. Although treatment with resveratrol alone did not induce caspase-8 activation, cotreatment with both SB203580 and resveratrol not only enhanced FasL cleavage but also activated caspase-8, indicating that the extrinsic apoptotic pathway may be involved in the synergistic effect. Collectively, we for the first time demonstrate that SB203580 synergistically enhances the resveratrol-induced apoptosis by accelerating Bax-mediated intrinsic pathway and initiating extrinsic pathway, suggesting a possible alternative therapeutic strategy for human lung cancer.  相似文献   

9.
Berberine (BBR) has indicated significant antimicrobial activity against a variety of organisms including bacteria, viruses, and fungi. The mechanism by which BBR initiates apoptosis remains poorly understood. In the present study, we demonstrated that BBR exhibited significant cytotoxicity in human hepatoma HepG2 cells. Herein, we investigated cytotoxicity mechanism of BBR in HepG2 cells. The results showed that the induction of apoptosis in HepG2 cells by BBR was characterized by DNA fragmentation, an increased percentage of annexin V, and the activation of caspase‐3. The expressions of Bcl‐2 protein and pro‐caspase‐3 were reduced by BBR in HepG2 cells. However, Bax protein was increased in the cells. BBR‐induced apoptosis was preceded by increased generation of reactive oxygen species (ROS). NAC treatment, a scavenger of ROS, reversed BBR‐induced apoptosis effects via inhibition of Bax activation and Bcl‐2 inactivation. BBR‐induced, dose‐dependent induction of apoptosis was accompanied by sustained phosphorylation of MAP Kinases (JNK and p38 MAPK), ASK1, Akt, and p53. Furthermore, SB203580, p38 inhibitor, reduced the apoptotic effect of BBR, and blocks the generation of ROS and NO as well as activation of Bax. We found that the treatment of HepG2 cells with BBR triggers generation of ROS through Akt phosphorylation, resulting in dissociation of the ASK1‐mediated activation of JNK and p38 pathways. J. Cell. Biochem. 109: 329–338, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
A possible role for metabolism by the human intestinal microflora in arbutin-induced cytotoxicity was investigated using human hepatoma HepG2 cells. When the cytotoxic effects of arbutin and hydroquinone (HQ), a deglycosylated metabolite of arbutin, were compared, HQ was more toxic than arbutin. Incubation of arbutin with a human fecal preparation could produce HQ. Following incubation of arbutin with a human fecal preparation for metabolic activation, the reaction mixture was filter-sterilized to test its toxic effects on HepG2 cells. The mixture induced cytotoxicity in HepG2 cells in a concentration-dependent manner. In addition, the mixture considerably inhibited expression of Bcl-2 together with an increase in Bax expression. Likewise, activation stimulated cleavage of caspase-3 and production of reactive oxygen species in HepG2 cell cultures. Furthermore, induction of apoptosis by the intestinal microflora reaction mixture was confirmed by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick-end labeling assay. Taken together, these findings suggest that the human intestinal microflora is capable of metabolizing arbutin to HQ, which can induce apoptosis in mammalian cells.  相似文献   

11.
Many lines of evidence have shown that Chinese medicine contains many chemical compounds with anticancer effects. Therefore, we tested whether the active ingredients of blister beetles have a therapeutic effect on hepatoma. The aim of this study was to investigate the inhibitive effects of norcantharidin which is extracted from blister beetles on human hepatoma cells HepG2 in vitro and its anticancer mechanism.MTT assay, agarose gel electrophoresis and flow cytometry were used to evaluate HepG2 cells proliferation and apoptosis. The role of caspase activities were assayed using caspase apoptosis detection kit. Western blot analysis was used to evaluate the level of Bcl-2/Bax expression. Our results indicate that norcantharidin inhibited HepG2 cell growth in a time- and dose-dependent manner by MTT assay. HepG2 cells treated with norcantharidin showed typical characteristics of apoptosis including the DNA fragmentation. The activities of caspase-3, -9 were up-regulated after norcantharidin treatment. By western blot analysis, we found the level of Bcl-2 were down-regulated, whereas, the level of Bcl-2 Up-regulated.so we suggest that up-regulation of mitochondrial Bax expression and down-regulation of Bcl-2 expression participated in the apoptosis induced by NCTD. These results suggest that norcantharidin triggers apoptosis in hepato cancer cell lines via the activation of the caspses, mitochondrial pathways, and that this agent may be useful for developing new therapeutic regimens for the treatment of colorectal carcinoma.  相似文献   

12.
Yin QH  Yan FX  Zu XY  Wu YH  Wu XP  Liao MC  Deng SW  Yin LL  Zhuang YZ 《Cytotechnology》2012,64(1):43-51
Carvacrol is one of the members of monoterpene phenol and is present in the volatile oils of Thymus vulgaris, Carum copticum, origanum and oregano. It is a safe food additive commonly used in our daily life, and few studies have indicated that carvacrol has anti-hepatocarcinogenic activities. The rationale of the study was to examine whether carvacrol affects apoptosis of human hepatoma HepG2 cells. In this study, we showed that carvacrol inhibited HepG2 cell growth by inducing apoptosis as evidenced by Hoechst 33258 stain and Flow cytometric (FCM) analysis. Incubation of HepG2 cells with carvacrol for 24 h induced apoptosis by the activation of caspase-3, cleavage of PARP and decreased Bcl-2 gene expression. These results demonstrated that a significant fraction of carvacrol treated cells died by an apoptotic pathway in HepG2 cells. Moreover, carvacrol selectively altered the phosphorylation state of members of the MAPK superfamily, decreasing phosphorylation of ERK1/2 significantly in a dose-dependent manner, and activated phosphorylation of p38 but not affecting JNK MAPK phosphorylation. These results suggest that carvacrol may induce apoptosis by direct activation of the mitochondrial pathway, and the mitogen-activated protein kinase pathway may play an important role in the antitumor effect of carvacrol. These results have identified, for the first time, the biological activity of carvacrol in HepG2 cells and should lead to further development of carvacrol for liver disease therapy.  相似文献   

13.
Molecular mechanisms of echinocystic acid-induced apoptosis in HepG2 cells   总被引:12,自引:0,他引:12  
Echinocystic acid (EA), a natural triterpone enriched in various herbs, has been showed to have cytotoxic activity in some cancer cells, and is used for medicinal purpose in many Asian countries. In the present study, we found that EA could induce apoptosis in human HepG2 cells, as characterized by DNA fragmentation, activation of caspase-3, -8, and -9, and PARP cleavage. The efficacious induction of apoptosis was observed at 45 microM for 24 h. Molecular data showed that EA induced the truncation of Bid protein and reduction of Bcl-2 protein. EA also caused the loss of mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c release from mitochondria to cytosol. Moreover, EA could activate c-Jun NH(2)-terminal kinase (JNK) and p38 kinase, and JNK-specific inhibitor SP600125 and p38 kinase-specific inhibitor SB200235 could block serial molecular events of EA-induced apoptosis such as Bid truncation, Bcl-2 reduction, cytochrome c release, caspase activation, and DNA fragmentation in HepG2 cells. These findings indicate that JNK- and p38 kinase-mediated mitochondrial pathways might be involved in EA-induced apoptosis and enhance our understanding of the anticancer function of EA in herbal medicine.  相似文献   

14.
先前的研究表明,基因重组荞麦胰蛋白酶抑制剂 (rBTI) 具有诱导不同肿瘤细胞凋亡的作用.为了揭示其诱导肿瘤细胞凋亡的可能机理,从基因水平上探讨与凋亡有关的分子事件,本研究用不同浓度的 rBTI 体外作用于人肝癌细胞 HepG2 后,采用 MTT 比色法检测抑制剂对epG2 细胞的抑制率,用 DNA 凝胶电泳和细胞核的形态学观察检测 HepG2 细胞的凋亡.结果表明,rBTI 在体外能够明显抑制 HepG2 细胞的增长,并诱导细胞凋亡.另外,细胞凋亡与Bcl-2/Bax mRNA 水平有关.通过 RT-PCR 检测发现,细胞经过rBTI处理后,抗凋亡基因Bcl-2 mRNA 水平下调,促凋亡基因 Bax mRNA 有所上调,而对照 GAPDH 无变化.对 HepG2细胞中 Fas/Fas 配体及半胱氨酸天冬酶(caspase)的研究证明,细胞经过 rBTI 处理后,对死亡受体 Fas mRNA没有影响; rBTI 可明显激活caspase-3 和 caspase-9 酶活性, 对caspase-8 活性几乎无影响.上述结果表明,rBTI 对HepG2 细胞具有明显的诱导凋亡作用,其诱导细胞凋亡的机制与 caspase-3 依赖性凋亡调节信号通路有关,未涉及 Fas/Fas 配体途径.  相似文献   

15.
Fan Y  Chen H  Qiao B  Luo L  Ma H  Li H  Jiang J  Niu D  Yin Z 《Molecules and cells》2007,23(1):30-38
Dipyrithione (2, 2'-dithiobispyridine-1, 1'-dioxide, PTS2), a pyrithione derivate, is highly bactericidal and fungicidal. In this study we examined its apoptotic effect on HeLa cells. PTS2 induced HeLa cell death in a dose and time dependent manner. ERK1/2 and p38 were markedly activated, but little JNK1/2 activation was detected. Suppression of p38 activation by SB203580 reduced the extent of apoptosis of the HeLa cells and also prevented induction of p21, release of cytochrome c, and cleavage of caspase-3 and PARP. Inhibition of ERK1/2 with PD98059 increased apoptosis, indicating that ERK1/2 activation has an anti-apoptotic effect on PTS2-induced HeLa cell apoptosis. PTS2 also inhibited murine sarcoma 180 and hepatoma 22 tumor growth in an animal tumor model. Our findings indicate that PTS2 possesses anti-tumor activity, that caspase-3 and poly (ADP-ribose) polymerase (PARP) are involved in PTS2-induced HeLa cell apoptosis and that ERK1/2 and p38 have opposing effects on this apoptosis.  相似文献   

16.
研究了灵芝肽(GLP)在体外对人肝癌HepG2细胞凋亡的影响,并初步探讨了其作用机制。结果显示,透射电镜下可见细胞染色质浓缩、聚集于核边缘成块状,形成典型的凋亡小体;GLP使HepG2细胞阻滞于G0/G1期,随着GLP浓度升高,其G0/G1期的细胞比例随之增加;同时细胞的早期、晚期和总的凋亡率亦均随之增加,存在剂量-效应关系;Western blotting检测结果显示,抑制凋亡基因bcl-2和survivin表达下调,而促凋亡基因p53表达上调,并且都存在剂量依赖性;细胞凋亡的关键蛋白酶caspase-3被激活,并且caspase-3酶活性与GLP浓度亦有剂量依赖性。提示GLP体外可诱导人肝癌HepG2细胞凋亡,其作用机制可能与bcl-2和survivin表达下调、p53表达上调及Caspase-3被激活有关。  相似文献   

17.
We recently established that asparanin A, a steroidal saponin extracted from Asparagus officinalis L., is an active cytotoxic component. The molecular mechanisms by which asparanin A exerts its cytotoxic activity are currently unknown. In this study, we show that asparanin A induces G2/M phase arrest and apoptosis in human hepatocellular carcinoma HepG2 cells. Following treatment of HepG2 cells with asparanin A, cell cycle-related proteins such as cyclin A, Cdk1 and Cdk4 were down-regulated, while p21WAF1/Cip1 and p-Cdk1 (Thr14/Tyr15) were up-regulated. Additionally, we observed poly (ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3, caspase-8 and caspase-9. The expression ratio of Bax/Bcl-2 was increased in the treated cells, where Bax was also up-regulated. We also found that the expression of p53, a modulator of p21WAF1/Cip1 and Bax, was not affected in asparanin A-treated cells. Collectively, our findings demonstrate that asparanin A induces cell cycle arrest and triggers apoptosis via a p53-independent manner in HepG2 cells. These data indicate that asparanin A shows promise as a preventive and/or therapeutic agent against human hepatoma.  相似文献   

18.
In the present study, we investigate the anti-cancer activity and mechanism of caudatin, the C-21 steroidal glycosides, on human hepatoma cell line HepG2. The MTT assay and flow cytometry were used to evaluate HepG2 cell proliferation and cell cycle. Annexin-V/PI and DAPI staining were used to investigate cell apoptosis. Western blotting analysis was used to evaluate the expression levels of proteins. It is found that caudatin inhibits HepG2 cell growth and induces of G0/G1 phase arrest in a dose dependent manner, which is associated with a decreased in the expression of cyclinD1 and increased the levels of p21 and p53. HepG2 cells dealing with caudatin showed typical characteristics of apoptosis. Western blotting analysis indicated that the levels of Bcl-2 were down-regulated after caudatin treatment, whereas the expression of Bax was up-regulated. Furthermore, caudatin-induced apoptosis was accompanied by activation of caspase-3, -9, and poly(ADP-Ribose) Polymerase (PARP). Treatment with caudatin also induced phosphorylation of extracellular-signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). These results demonstrate that caudatin inhibits cell proliferation via DNA synthesis reduction and induces caspase-dependent apoptosis in HepG2 cell. Activation of ERK and JNK may be involved in caudatin-induced hepatoma cell apoptosis.  相似文献   

19.
During the search of new anti-cancer agent from high fungi, the ethyl acetate extract of the mushroom Suillus placidus was found to exhibit a significant cytotoxic activity against human hepatoma HepG2 cells. With bioassay-guided fractionation, a cytotoxic component suillin was isolated from the extract. The anti-cancer effect of suillin was subsequently examined in 8 human cancer cell lines by using MTT assay. It is of interest to note that human liver cancer cells (HepG2 cells, Hep3B cells, and SK-Hep-1) were preferentially killed by suillin with an IC50 of 2 μM in a 48 h treatment.Mechanistically. suillin was found for the first time to induce apoptosis in HepG2 cells as characterized by DNA fragmentation, phosphatidyl-serine (PS) externalization, activation of caspase-3, -8, -9, depolarization of mitochondrial membrane potential, as well as release of cytochrome c into the cytosol. Moreover, the apoptosis induced by suillin was suppressed by both caspase-8 and -9 inhibitors. Western blot analysis revealed significant increases in the protein levels of Fas death receptor, adaptor FADD protein, pro-apoptotic protein Bad and a decline of Bid. These results suggest that the induction of apoptosis by suillin is through both death receptor and mitochondrial pathways. Taken together, our results suggest that suillin might be an effective agent to treat liver cancer.  相似文献   

20.
Ebselen, a selenoorganic compound, has recently been shown to display a novel property of inducing apoptosis through rapid depletion of intracellular thiols in human hepatoma cells, HepG(2). The present study was thus designed to explore the mechanism of how ebselen triggers apoptosis upon depletion of intracellular thiols. The results demonstrated that ebselen treatment triggered mitochondrial permeability transition rather rapidly as revealed by redistribution of calcein green fluorescence from cytosol into mitochondria. Ebselen treatment also caused a dose- and time-dependent loss of mitochondrial membrane potential (MMP) and release of cytochrome c. Pretreatment with N-acetylcysteine, a precursor of intracellular reduced glutathione (GSH) synthesis, significantly attenuated the ebselen-induced MMP disruption and subsequently inhibited the apoptosis. In contrast, pretreatment with buthionine sulfoximine, a specific inhibitor of intracellular GSH synthesis, significantly augmented the ebselen-induced MMP alteration, and enhanced the apoptosis. Although ebselen treatment significantly increased the intracellular superoxide radical and calcium concentrations, superoxide dismutase, and BAPTA (a calcium chelator), however, failed to prevent ebselen-induced MMP loss and apoptosis. Neither caspase-9 nor caspase-3 activation was detected in ebselen-treated cells. Z-VAD-FMK, a general caspase inhibitor, also had no effect on ebselen-induced MMP decrease and apoptosis. The overall findings thus suggest that mitochondrial permeability transition resulted from intracellular thiol depletion is a critical event in ebselen-induced apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号