首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously described that oligonucleotides (ODN) containing phenylsulfoxide derivative of 2-amino-6-vinylpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. In this paper, we wish to report the search for more stable precursor susceptible for activation within duplex.  相似文献   

2.
We have previously described that oligonucleotides (ODN) containing phenylsulfoxide derivative of 2-amino-6-vinylpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. In this paper, we wish to report the search for more stable precursor susceptible for activation within duplex.  相似文献   

3.
We have previously demonstrated that the ODNs with 2-amino-6-(2-phenylsulfoxyethyl)purine nucleoside derivative were capable of efficient interstrand cross-linking with cytidine selectively. In this new strategy, less reactive precursor was auto-activated within a duplex to generate 2-amino-6-vinylpurine derivative. However, it turned out that 2-amino-6-(2-phenylsulfinyl)-ethylpurine nucleoside was not applicable as the precursor for the synthesis of DNA oligomers with G-rich sequences. In this report, 2-amino-6-(2-methylsulfinylethyl)purine nucleoside has been proven to be more suitable as a precursor for DNA synthesis. In addition, the ODNs incorporating either 2-amino-6-(2-phenylsulfoxy ethyl)purine or 2-amino-6-vinylpurine showed high reactivity toward the cytidine at the target site but quite less reactivity was observed for it at non-target site, demonstrating high site-selectivity.  相似文献   

4.
Bis(Zn(II)-cyclen)-azobenzene derivative, which has two Zn(II)-macrocyclic tetraamine complexes connected through azobenzene spacer, has been synthesized as a cross-linking agent fordoublestranded DNA in aqueous solution. The Zn(II)-cyclen derivative selectively binds to A-T base pairs producing complexes between the Zn(II)-cyclen moiety and the imide-deprotonated thymine with breaking A-T base pairs. The azobenzene spacer undergoes cis/trans photoisomerization in the complex between the Zn(II)-cyclen derivative and the DNA duplex. The conformation of the DNA remarkably changed by photoisomerization of the azobenzene linker, when the Zn(II)-cyclen derivative binds to the DNA duplex with an interstrand cross-linking manner  相似文献   

5.

Bis(ZnII-cyclen)-azobenzene derivative, which has two ZnII-macrocyclic tetraamine complexes connected through azobenzene spacer, has been synthesized as a cross-linking agent for double stranded DNA in aqueous solution. The ZnII-cyclen derivative selectively binds to A-T base pairs producing complexes between the ZnII-cyclen moiety and the imide-deprotonated thymine with breaking A-T base pairs. The azobenzene spacer undergoes cis/trans photoisomerization in the complex between the ZnII-cyclen derivative and the DNA duplex. The conformation of the DNA remarkably changed by photoisomerization of the azobenzene linker, when the ZnII-cyclen derivative binds to the DNA duplex with an interstrand cross-linking manner.  相似文献   

6.
Oligodeoxyribonucleotides containing thymidine and 8-oxo-2'-deoxyadenosine can form pyr.pur.pyr type triplexes with double-stranded DNA. Unlike triplexes whose third strands contain thymidine and deoxycytidine, the stability of these triplexes is independent of pH. We have prepared d-ps-TAAATAAATTTTTAT-L [I(A)], where A is 8-oxo-2'-deoxyadenosine, ps is 4'-hydroxymethyl-4,5',8- trimethylpsoralen and L is a 6-amino-2-(hydroxymethyl)hexyl linker. The oligomer is designed to interact with a homopurine sequence in the promoter region of the human gene coding for the 92 kDa form of collagenase type IV. Oligomer I(A) and oligomer I(C), which contains 2'-deoxycytidine in place of 8-oxo-2'-deoxycytidine, both form stable triplexes at pH 6.2, but only I(A) forms a stable triplex with a model duplex DNA target at pH 7.5, as determined by UV melting experiments. Triplex formation is stabilized by the presence of the psoralen group. Upon irradiation both I(A) and I(C) form photoadducts with the DNA target at pH 6.2, but only I(A) forms a photoadduct at pH 7.5. In these photoreactions oligomer I(A) appears to selectively form a photoadduct with a C in the purine-rich strand of the duplex target. Although a T residue is present in the pyrimidine-rich strand of the target at the duplex/triplex junction, essentially no adduct formation takes place with this strand, nor is interstrand cross-linking observed. The extent of photoadduct formation decreases with increasing temperature, behavior which is consistent with the UV melting curve of the triplex. A tetramethylrhodamine derivative of I(A) was prepared and found to cross-link less extensively than I(A) itself. Oligomer I(A) is completely resistant to hydrolysis when incubated for 24h in the presence of 10% fetal bovine serum at 37 degree C, although it is hydrolyzed by S1 nuclease. The properties of oligomer I(A) suggest that 8-oxo- containing oligomers may find utility as antigene oligonucleotide reagents.  相似文献   

7.
Rink SM  Warner DL  Klapars A  Vedejs E 《Biochemistry》2005,44(42):13981-13986
The aziridinomitosene derivative (1S,2S)-6-desmethyl(methylaziridino)mitosene (4) was shown to alkylate plasmid DNA at pH 7.4 in the absence of a reducing agent [Vedejs, E., Naidu, B. N., Klapars, A., Warner, D. L., Li, V. -s., Na, Y., and Kohn, H. (2003) J. Am. Chem. Soc. 125, 15796-15806], an activity not found in the parent mitomycins. We sought to evaluate aziridinomitosene 4 for the presence of DNA interstrand cross-linking activity using nonreductive reaction conditions. Radiolabeled DNA treated with 4 was analyzed by denaturing polyacrylamide gel electrophoresis (DPAGE), a technique that readily separates the less mobile cross-linked ds DNA from the more mobile ss DNA products. Nonreduced 4 produced an interstrand cross-link (ICL) in duplex DNA containing 5'-d(CG) sites, and the yield of ICL was comparable to that obtained from reduced MC under similar conditions. A ds DNA having the central tetranucleotide 5'-d(ACGT) provided the greatest ICL yield from both nonreduced 4 and reduced MC. Substitution of 5'-d(CG) with the inverted sequence 5'-d(GC) completely abolished interstrand cross-linking by 4, revealing 5'-d(CG) as its specific site of ICL formation. Replacement of dG at 5'-d(CG) with 2'-deoxyinosine (dI), which lacks the exocyclic C2 amino group present in dG, also prevented DNA ICL formation by 4, revealing an essential role for the dG C2 amino group in the interstrand cross-linking reaction between 4 and duplex DNA. This report directly demonstrates the presence of bifunctional alkylating activity in a nonreduced aziridinomitosene and clearly shows that unreduced 4 alkylates residues in the minor groove of ds DNA, cross-linking with the same 5'-d(CG) sequence specificity displayed by reduced MC.  相似文献   

8.
Burbano HA  Andrade E 《Gene》2007,396(1):75-83
Wong's theory of the genetic code's origin states that because of historical constraints, codon assignment depends on the relation between precursor and derivative amino acids, a result of the coevolutionary process between amino acids' biosynthetic pathways and tRNAs. Based on arguments supporting the assumption that natural selection favors more stable and thus functionally constrained structures, we tested whether precursor and derivative tRNAs are equally evolved by measuring their structural parameters, thermostability and molecular plasticity. We also estimated the extent to which precursor and derivative tRNAs differ within Archaea. We used Archaea sequences of both precursor and derivative tRNAs in order to examine the plastic repertoires or sets of suboptimal structures at a defined free energy interval. We grouped secondary structures according to their helix nesting and adjacency using abstract shapes analysis. This clustering enabled us to infer a consensus sequence for all shapes that fit the clover leaf secondary structure [Giegerich, R., et al., Nucleic Acids Res 2004; 32 (16): 4843-51.]. This consensus sequence was then folded in order to retrieve a set of suboptimal structures. For each pair of precursor and derivative tRNAs, we compared these plastic repertoires based on the number of secondary structures, the thermostability of the minimum free energy structure and two structural parameters (base pair propensity (P) and mean length of helical stem structures (S)), which were measured for every representative secondary structure [Schultes, E.A., et al., J Mol Evol 1999; 49 (1): 76-83.]. We found that derivative tRNAs have fewer numbers of shapes, higher thermostability and more stable parameters than precursor tRNAs, a fact in full agreement with Wong's coevolution theory of the genetic code.  相似文献   

9.
Disulfide cross-linking is being used increasingly more to study the structure and dynamics of nucleic acids. We have previously developed a procedure for the formation of disulfide cross-links through the sugar-phosphate backbone of nucleic acids. Here we report the preparation and characterization of an RNA duplex containing a disulfide interstrand cross-link. A self-complementary oligoribonucleotide duplex containing an interstrand cross-link was prepared from the corresponding 2'-amino modified oligomer. Selective modification of the 2'-amino group with an aliphatic isocyanate, containing a protected disulfide, gave the corresponding 2'-urea derivative in excellent yield. An RNA duplex containing an intrahelical, interstrand disulfide cross-link was subsequently prepared by a thiol disulfide exchange reaction in nearly quantitative yield as judged by denaturing polyacrylamide gel electrophoresis (DPAGE). The cross-linked RNA was further characterized by enzymatic digestion and the Structure of the cross-link lesion was verified by comparison to an authentic sample, prepared by chemical synthesis. The effect of the chemical modifications on duplex stability was determined by UV thermal denaturation experiments. The intrahelical cross-link stabilized the duplex considerably: the disulfide cross-linked oligomer had a melting temperature that was ca. 40 degrees C higher than that of the noncross-linked oligomer.  相似文献   

10.
Three glucuronate-rich dermatan sulfate proteoglycan (DS-PG) subclasses were isolated and previously characterized from bovine aortic endothelial cell cultures (Kinsella, M. G., and Wight, T. N. (1988) J. Biol. Chem. 263, 19222-19231). In the present study, pulse-chase experiments indicate that the DS-PG of highest apparent Mr (approximately 1 x 10(6)), denoted previously as HMW-DS, is a relatively stable component of the endothelial extracellular matrix and is formed at the expense of lower Mr DS-PG species. The formation of HMW-DS is reduced in a dose-dependent manner in the presence of dansylcadaverine, an inhibitor of transglutaminase-catalyzed protein cross-linking, but not when the activity of other cross-linking enzymes such as lysyl oxidase is inhibited. The putative DS-PG precursor to HMW-DS accumulates during inhibition of cross-linking only when lysosomal degradation is also inhibited by ammonium chloride, suggesting that the precursor is degraded rapidly in the absence of cross-linking. HMW-DS is precipitable from endothelial cell monolayer extracts with antibodies against fibronectin, a known transglutaminase substrate. Thus, we conclude that the stability of HMW-DS in the subendothelial matrix in culture depends upon the cross-linking of a low Mr DS-PG precursor to matrical protein(s), including fibronectin, resulting in the formation of a DS-PG subclass of high apparent molecular mass.  相似文献   

11.
The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations.  相似文献   

12.
Structural properties of the fluorescent alpha-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with alpha-epsilondA / dG pairing is most thermodynamically stable while the alpha-epsilondA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of alpha-epsilondA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the alpha-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

13.
We have already demonstrated that the oligonucleotides DNA (ODNs) bearing a 2-amino-6-vinylpurine derivative (1) exhibited efficient interstrand cross-linking to cytidine selectively. In this study, a new reactive nucleoside analogue, 2-amino-6-(1-ethylsulfoxy)vinylpurine derivative (7), was designed based on a computational method to achieve high and selective alkylation with cytidine under neutral conditions. It has been demonstrated that the ODN (13) bearing 2-amino-6-(1-ethylsulfoxy)vinylpurine achieved highly selective and efficient cross-linking to cytidine under neutral conditions.  相似文献   

14.
The phosphoramidites of 8-aza-7-deaza-2'-deoxyisoguanosine (1a) and its bromo derivative 1b as well as of 6-aza-2'-deoxyisocytidine and its 5-methyl derivative (3a,b) were synthesized. Parallel-stranded duplexes containing the nucleosides 1a,b show a significantly enhanced duplex stability compared to those containing 2'-deoxyisoguanosine.  相似文献   

15.
Abstract

Structural properties of the fluorescent α-anomeric 1,N(6)ethenodeoxyadenosine residue placed in opposition to all four canonical deoxynucleotide units within 11-mer DNA duplexes have been studied. The duplex with α-εedA / dG pairing is most thermodynamically stable while the α-edA / dC one is the least stable. Fluorescence measurements confirm the thermodynamic data and indicate base-pair dependent stacking properties of α-edA within duplex structures. Results of molecular dynamics (MD) simulations in aqueous solution for the most stable duplex point to the presence of different conformational states of the α-1,N(6)etheno-deoxyadenosine residue, including formation of a hydrogen bonded pair with the dG and possible occurrence of severe kinking in the duplex.  相似文献   

16.
Tethering an ethylene diamine linker to the 5' terminus of an oligothymidine sequence provides a site for complexation with K(2)PtCl(4). Due to the low reactivity of dT toward a platinum source, we chose dT(8) and dT(15) as our initial synthetic targets for platination. Post-synthetic reaction of the platinum reagent with the diamino oligothymidine generates the diamino dichloro platinum-DNA conjugate that can be used for DNA duplex targeting by oligodeoxyncleotide-mediated triplex formation. The dT(8) sequence is not sufficiently long to facilitate triplex formation and Pt-cross-linking, whereas with a dT(15) sequence cross-linking between the third strand and the duplex occurs exclusively with the duplex target strand directly involved in triplex formation. No examples of cross-linking to the complementary target strand, or of cross-linking to both target strands are observed. Most efficient cross-linking occurs when the dinucleotide d(GpG) is present in the target strand and no cross-linking occurs with the corresponding 7-deazaG dinucleotide target. Cross-linking is also observed when dC or dA residues are present in the target strand, or even with a single dG residue, but it is not observed in any cases to dT residues. Triplex formation provides the ability to target specific sequences of double-stranded DNA and the orientational control arising from triplex formation is sufficient to alter the binding preferences of platinum. Conjugates of the type described here offer the potential of delivering a platinum complex to a specific DNA site.  相似文献   

17.
D J Allen  P L Darke  S J Benkovic 《Biochemistry》1989,28(11):4601-4607
Fluorescent derivatives of short oligonucleotides of defined sequence were prepared by the incorporation of 5-(propylamino)uridine via current phosphoramidite chemistry, followed by derivatization of the propylamine function with mansyl chloride. These oligomers, annealed to complementary oligomers, yielded short duplex DNA fluorescently labeled at a specific base. The fluorescence emission from this labeled duplex increases upon binding to the Klenow fragment of DNA polymerase I (KF) at specific positions within the duplex DNA. By varying the position of the label within the duplex DNA and observing the emission, points of strong enzyme-DNA interactions were elucidated. A similar fluorescent derivative of a deoxynucleoside triphosphate (dNTP), 5-[[[[[[(5- sulfonaphthalenyl)amino]ethyl]amino]carbonyl]- methyl]thio]-2'-deoxyuridine 5'-triphosphate (AEDANS-S-dUTP), was synthesized, whose emission also was increased upon binding to KF. The change in emission intensities between unbound and bound substrates enabled the measurements of KDs for the DNA and dNTP derivative, which were found to be 0.15 nM and 2.9 microM, respectively. Stopped-flow measurements on these species yielded association and dissociation rates for each. Anisotropy measurements of the labeled base at various positions in the duplex yielded values that support the measurements made by observing the emission intensities.  相似文献   

18.
Strand-specific binding of RPA and XPA to damaged duplex DNA   总被引:7,自引:0,他引:7  
The nucleotide excision repair (NER) pathway is a major pathway used to repair bulky adduct DNA damage. Two proteins, xeroderma pigmentosum group A protein (XPA) and replication protein A (RPA), have been implicated in the role of DNA damage recognition in the NER pathway. The particular manner in which these two damage recognition proteins align themselves with respect to a damaged DNA site was assessed using photoreactive base analogues within specific DNA substrates to allow site-specific cross-linking of the damage recognition proteins. Results of these studies demonstrate that both RPA and XPA are in close proximity to the adduct as measured by cross-linking of each protein directly to the platinum moiety. Additional studies demonstrate that XPA contacts both the damaged and undamaged strands of the duplex DNA. Direct evidence is presented demonstrating preferential binding of RPA to the undamaged strand of a duplex damaged DNA molecule.  相似文献   

19.
A dialkyl-substituted anthraquinone derivative was synthesized and ligated to a sequence-directing oligodeoxynucleotide to examine its efficiency and specificity for cross-linking to complementary sequences of DNA. The anthraquinone appendage stabilized spontaneous hybridization of the target and probe sequences through non-covalent interactions, as indicated by thermal denaturation studies. Covalent modification of the target was induced by exposure to near UV light (lambda > 335 nm) to generate cross-linked duplexes in yields as great as 45%. Reaction was dependent on the first unpaired nucleotide extended beyond the duplex formed by association of the target and probe. A specificity of C > T > A = G was determined for modification at this position. The overall site and nucleotide selectivity seems to originate from the chemical requirements of cross-linking and does not likely reflect the dominant solution structure of the complex prior to irradiation.  相似文献   

20.
Schistosoma mansoni: eggshell formation is regulated by pH and calcium   总被引:8,自引:0,他引:8  
The protein precursors of the schistosome eggshell are synthesized and packaged into secretory vesicles in the vitelline cells. These vesicles appear to contain an emulsion of eggshell precursor material. Evidence is presented to show that these secretory vesicles are acidic as in other systems and that this acidity stabilizes the emulsion and prevents the eggshell cross-linking reactions from occurring. Alkalinizing treatments trigger eggshell formation within the secretory vesicles as shown by (1) the induction of autofluorescence and (2) by electron microscopy which shows that the eggshell precursors have aggregated within the secretory vesicles into spherical particles bearing microspines. These aggregates formed in the secretory vesicles were isolated and shown to have the same protease resistance and amino acid composition as authentic eggshell. The calcium ionophore A23187 induces scattered autofluorescence in intact female worms which electron micrographs show to be due to exocytosis of eggshell material. Based on these observations we propose a model for the formation of schistosome eggshell and suggest that it may apply to all trematodes in which the eggshell precursors are present as stable emulsions in the secretory vesicles of the vitelline cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号