首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the bacteriocin plasmid p9B4-6 of Lactococcus lactis subsp. cremoris 9B4, a third bacteriocin determinant was identified. The genes encoding bacteriocin production and immunity resided on a 1.2-kb CelII-ScaI fragment and were located adjacent to one of two previously identified bacteriocin operons (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). The fragment was sequenced and analyzed by deletion and mutation analyses. The bacteriocin determinant consisted of two genes which were transcribed as an operon. The first gene (lcnB), containing 68 codons, was involved in bacteriocin activity. The second gene (lciB) contained 91 codons and was responsible for immunity. The specificity of this novel bacteriocin, designated lactococcin B, was different from that of the other two bacteriocins specified by p9B4-6. Part of the nucleotide sequence of the lactococcin B operon was similar to a nucleotide sequence also found in the two other bacteriocin operons of p9B4-6. This conserved region encompassed a nucleotide sequence upstream of the bacteriocin gene and the 5' part of the gene. When the lactococcin B operon was expressed in Escherichia coli by using a T7 RNA polymerase-specific promoter, antagonistic activity could be detected.  相似文献   

2.
Organization and nucleotide sequences of two lactococcal bacteriocin operons   总被引:12,自引:0,他引:12  
Two distinct regions of the Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6, each of which specified bacteriocin production as well as immunity, have been sequenced and analyzed by deletion and frameshift mutation analyses. On a 1.8-kb ScaI-ClaI fragment specifying low antagonistic activity, three open reading frames (ORFs) were present, which were organized in an operon. The first two ORFs, containing 69 and 77 codons, respectively, were involved in bacteriocin activity, whereas the third ORF, containing 154 codons, was essential for immunity. Primer extension analysis indicated the presence of a promoter upstream of the ORFs. Two ORFs were present on a 1.3-kb ScaI-HindII fragment specifying high antagonistic activity. The first ORF, containing 75 codons, specified bacteriocin activity. The second ORF, containing 98 codons, specified immunity. The nucleotide sequences of both fragments upstream of the first ORFs as well as the first 20 bp of the first ORF of both bacteriocin operons appeared to be identical.  相似文献   

3.
Two distinct regions of the Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6, each of which specified bacteriocin production as well as immunity, have been sequenced and analyzed by deletion and frameshift mutation analyses. On a 1.8-kb ScaI-ClaI fragment specifying low antagonistic activity, three open reading frames (ORFs) were present, which were organized in an operon. The first two ORFs, containing 69 and 77 codons, respectively, were involved in bacteriocin activity, whereas the third ORF, containing 154 codons, was essential for immunity. Primer extension analysis indicated the presence of a promoter upstream of the ORFs. Two ORFs were present on a 1.3-kb ScaI-HindII fragment specifying high antagonistic activity. The first ORF, containing 75 codons, specified bacteriocin activity. The second ORF, containing 98 codons, specified immunity. The nucleotide sequences of both fragments upstream of the first ORFs as well as the first 20 bp of the first ORF of both bacteriocin operons appeared to be identical.  相似文献   

4.
Leucocin A is a small heat-stable bacteriocin produced by Leuconostoc gelidum UAL187. A 2.9-kb fragment of plasmid DNA that contains the leucocin structural gene and a second open reading frame (ORF) in an operon was previously cloned (J. W. Hastings, M. Sailer, K. Johnson, K. L. Roy, J. C. Vederas, and M. E. Stiles, J. Bacteriol. 173:7491-7500, 1991). When a 1-kb DraI-HpaI fragment containing this operon was introduced into a bacteriocin-negative variant (UAL187-13), immunity but no leucocin production was detected. Leucocin production was observed when an 8-kb SacI-HindIII fragment of the leucocin plasmid was introduced into L. gelidum UAL187-13 and Lactococcus lactis IL1403. Nucleotide sequence analysis of this 8-kb fragment revealed the presence of three ORFs in an operon upstream of and on the strand opposite from the leucocin structural gene. The first ORF (lcaE) encodes a putative protein of 149 amino acids with no apparent function in leucocin A production. The second ORF (lcaC) contains 717 codons that encode a protein homologous to members of the HlyB family of ATP-binding cassette transporters. The third ORF (lcaD) contains 457 codons that encode a protein with marked similarity to LcnD, a protein essential for the expression of the lactococcal bacteriocin lactococcin A. Deletion mutations in lcaC and lcaD resulted in loss of leucocin production, indicating that LcaC and LcaD are involved in production and translocation of leucocin A. The secretion apparatus for lactococcin A did not complement mutations in the lcaCD genes to express leucocin A in L. lactis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cloning of two bacteriocin genes from a lactococcal bacteriocin plasmid   总被引:10,自引:0,他引:10  
Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6 (60 kilobases [kb]), which specifies bacteriocin production and immunity, was analyzed with restriction endonucleases, and fragments of this plasmid were cloned into shuttle vectors based on the broad-host-range plasmid pWVO1. Two regions on p9B4-6 were identified which specify inhibitory activity on L. lactis indicator strains: one that could be confined to a 1.8-kb ScaI-ClaI fragment with low antagonistic activity and a 15-kb XbaI-SalI fragment specifying high antagonistic activity. The inhibitory substances produced by these two clones were sensitive to proteolysis. A 4-kb HindIII fragment derived from the 15-kb fragment strongly hybridized with the 1.8-kb fragment. The antagonistic activity specified by the 4-kb fragment was somewhat reduced as compared with that of the 15-kb fragment. A 1.3-kb ScaI-HindIII subfragment of the 4-kb fragment contained both the immunity and bacteriocin genes. Inhibition studies showed that the two bacteriocins had different specificities.  相似文献   

6.
Lactococcus lactis subsp. cremoris 9B4 plasmid p9B4-6 (60 kilobases [kb]), which specifies bacteriocin production and immunity, was analyzed with restriction endonucleases, and fragments of this plasmid were cloned into shuttle vectors based on the broad-host-range plasmid pWVO1. Two regions on p9B4-6 were identified which specify inhibitory activity on L. lactis indicator strains: one that could be confined to a 1.8-kb ScaI-ClaI fragment with low antagonistic activity and a 15-kb XbaI-SalI fragment specifying high antagonistic activity. The inhibitory substances produced by these two clones were sensitive to proteolysis. A 4-kb HindIII fragment derived from the 15-kb fragment strongly hybridized with the 1.8-kb fragment. The antagonistic activity specified by the 4-kb fragment was somewhat reduced as compared with that of the 15-kb fragment. A 1.3-kb ScaI-HindIII subfragment of the 4-kb fragment contained both the immunity and bacteriocin genes. Inhibition studies showed that the two bacteriocins had different specificities.  相似文献   

7.
8.
The lantibiotic lacticin 481 is a bacteriocin produced by Lactococcus lactis strains. The genetic determinants of lacticin 481 production are organized as an operon encoded by a 70-kb plasmid. We previously reported the first three genes of this operon, lctA, lctM, and lctT, which are involved in the bacteriocin biosynthesis and export (A. Rincé, A. Dufour, S. Le Pogam, D. Thuault, C. M. Bourgeois, and J.-P. Le Pennec, Appl. Environ. Microbiol. 60:1652-1657, 1994). The operon contains three additional open reading frames: lctF, lctE, and lctG. The hydrophobicity profiles and sequence similarities strongly suggest that the three gene products associate to form an ABC transporter. When the three genes were coexpressed into a lacticin 481-sensitive L. lactis strain, the strain became resistant to the bacteriocin. This protection could not be obtained when any of the three genes was deleted, confirming that lctF, lctE, and lctG are all necessary to provide immunity to lacticin 481. The quantification of the levels of immunity showed that lctF, lctE, and lctG could account for at least 6% and up to 100% of the immunity of the wild-type lacticin 481 producer strain, depending on the gene expression regulation. The lacticin 481 biosynthesis and immunity systems are discussed and compared to other lantibiotic systems.  相似文献   

9.
The genes responsible for bacteriocin production and immunity in Lactococcus lactis subsp. lactis biovar diacetylactis WM4 were localized and characterized by DNA restriction fragment deletion, subcloning, and nucleotide sequence analysis. The nucleotide sequence of a 5.6-kb AvaII restriction fragment revealed a cluster with five complete open reading frames (ORFs) in the same orientation. DNA and protein homology analyses, combined with deletion and Tn5 insertion mutagenesis, implicated four of the ORFs in the production of and immunity to lactococcin A. The last two ORFs in the cluster were the lactococcin A structural and immunity genes, lcnA and lciA. The two ORFs immediately upstream of lcnA and lciA were designated lcnC and lcnD, and the proteins that they encoded showed similarities to proteins of signal sequence-independent secretion systems. lcnC encodes a protein of 716 amino acids that could belong to the HlyB family of ATP-dependent membrane translocators. LcnC contains an ATP binding domain in a conserved C-terminal stretch of approximately 200 amino acids and three putative hydrophobic segments in the N terminus. The lcnD product, LcnD, of 474 amino acids, is essential for lactococcin A expression and shows structural similarities to HlyD and its homologs. On the basis of these results, a secretion apparatus that is essential for the full expression of active lactococcin A is postulated.  相似文献   

10.
Lactococcin A is a bacteriocin produced by Lactococcus lactis. Its structural gene has recently been cloned and sequenced (M. J. van Belkum, B. J. Hayema, R. E. Jeeninga, J. Kok, and G. Venema, Appl. Environ. Microbiol. 57:492-498, 1991). Purified lactococcin A increased the permeability of the cytoplasmic membrane of L. lactis and dissipated the membrane potential. A significantly higher concentration of lactococcin A was needed to dissipate the membrane potential in an immune strain of L. lactis. Lactococcin A at low concentrations (0.029 microgram/mg of protein) inhibited secondary and phosphate-bond driven transport of amino acids in sensitive cells and caused efflux of preaccumulated amino acids. Accumulation of amino acids by immune cells was not affected by this concentration of lactococcin A. Lactococcin A also inhibited proton motive force-driven leucine uptake and leucine counterflow in membrane vesicles of the sensitive strain but not in membrane vesicles of the immune strain. These observations indicate that lactococcin A makes the membrane permeable for leucine in the presence or absence of a proton motive force and that the immunity factor(s) is membrane linked. Membrane vesicles of Clostridium acetobutylicum, Bacillus subtilis, and Escherichia coli were not affected by lactococcin A, nor were liposomes derived from phospholipids of L. lactis. These results indicate that lactococcin A acts on the cytoplasmic membrane and is very specific towards lactococci. The combined results obtained with cells, vesicles, and liposomes suggest that the specificity of lactococcin A may be mediated by a receptor protein associated with the cytoplasmic membrane.  相似文献   

11.
The genes responsible for bacteriocin production and immunity in Lactococcus lactis subsp. lactis biovar diacetylactis WM4 were localized and characterized by DNA restriction fragment deletion, subcloning, and nucleotide sequence analysis. The nucleotide sequence of a 5.6-kb AvaII restriction fragment revealed a cluster with five complete open reading frames (ORFs) in the same orientation. DNA and protein homology analyses, combined with deletion and Tn5 insertion mutagenesis, implicated four of the ORFs in the production of and immunity to lactococcin A. The last two ORFs in the cluster were the lactococcin A structural and immunity genes, lcnA and lciA. The two ORFs immediately upstream of lcnA and lciA were designated lcnC and lcnD, and the proteins that they encoded showed similarities to proteins of signal sequence-independent secretion systems. lcnC encodes a protein of 716 amino acids that could belong to the HlyB family of ATP-dependent membrane translocators. LcnC contains an ATP binding domain in a conserved C-terminal stretch of approximately 200 amino acids and three putative hydrophobic segments in the N terminus. The lcnD product, LcnD, of 474 amino acids, is essential for lactococcin A expression and shows structural similarities to HlyD and its homologs. On the basis of these results, a secretion apparatus that is essential for the full expression of active lactococcin A is postulated.  相似文献   

12.
Plantaricin 423 is a class IIa bacteriocin produced by Lactobacillus plantarum isolated from sorghum beer. It has been previously determined that plantaricin 423 is encoded by a plasmid designated pPLA4, which is now completely sequenced. The plantaricin 423 operon shares high sequence similarity with the operons of coagulin, pediocin PA-1, and pediocin AcH, with small differences in the DNA sequence encoding the mature bacteriocin peptide and the immunity protein. Apart from the bacteriocin operon, no significant sequence similarity could be detected between the DNA or translated sequence of pPLA4 and the available DNA or translated sequences of the plasmids encoding pediocin AcH, pediocin PA-1, and coagulin, possibly indicating a different origin. In addition to the bacteriocin operon, sequence analysis of pPLA4 revealed the presence of two open reading frames (ORFs). ORF1 encodes a putative mobilization (Mob) protein that is homologous to the pMV158 superfamily of mobilization proteins. Highest sequence similarity occurred between this protein and the Mob protein of L. plantarum NCDO 1088. ORF2 encodes a putative replication protein that revealed low sequence similarity to replication proteins of plasmids pLME300 from Lactobacillus fermentum and pYIT356 from Lactobacillus casei. The immunity protein of plantaricin 423 contains 109 amino acids. Although plantaricin 423 shares high sequence similarity with the pediocin PA-1 operon, no cross-reactivity was recorded between the immunity proteins of plantaricin 423 and pediocin PA-1.  相似文献   

13.
H Holo  O Nilssen    I F Nes 《Journal of bacteriology》1991,173(12):3879-3887
A new bacteriocin, termed lactococcin A (LCN-A), from Lactococcus lactis subsp. cremoris LMG 2130 was purified and sequenced. The polypeptide contained no unusual amino acids and showed no significant sequence similarity to other known proteins. Only lactococci were killed by the bacteriocin. Of more than 120 L. lactis strains tested, only 1 was found resistant to LCN-A. The most sensitive strain tested, L. lactis subsp. cremoris NCDO 1198, was inhibited by 7 pM LCN-A. By use of a synthetic DNA probe, lcnA was found to be located on a 55-kb plasmid. The lcnA gene was cloned and sequenced. The sequence data revealed that LCN-A is ribosomally synthesized as a 75-amino-acid precursor including a 21-amino-acid N-terminal extension. An open reading frame encoding a 98-amino-acid polypeptide was found downstream of and in the same operon as lcnA. We propose that this open reading frame encodes an immunity function for LCN-A. In Escherichia coli lcnA did not cause an LCN-A+ phenotype. L. lactis subsp. lactis IL 1403 produced small amounts of the bacteriocin and became resistant to LCN-A after transformation with a recombinant plasmid carrying lcnA. The other lactococcal strains transformed with the same recombinant plasmid became resistant to LCN-A but did not produce any detectable amount of the bacteriocin.  相似文献   

14.
K Kanatani  M Oshimura    K Sano 《Applied microbiology》1995,61(3):1061-1067
Acidocin A, a bacteriocin produced by Lactobacillus acidophilus TK9201, is active against closely related lactic acid bacteria and food-borne pathogens including Listeria monocytogenes. The bacteriocin was purified to homogeneity by ammonium sulfate precipitation and sequential ion-exchange and reversed-phase chromatographies. The molecular mass was determined by high-performance liquid chromatography gel filtration to be 6,500 Da. The sequence of the first 16 amino acids of the N terminus was determined, and oligonucleotide probes based on this sequence were constructed to detect the acidocin A structural gene acdA. The probes hybridized to the 4.5-kb EcoRI fragment of a 45-kb plasmid, pLA9201, present in L. acidophilus TK9201, and the hybridizing region was further localized to the 0.9-kb KpnI-XbaI fragment. Analysis of the nucleotide sequence of this fragment revealed that acidocin A was synthesized as an 81-amino-acid precursor including a 23-amino-acid N-terminal extension. An additional open reading frame (ORF2) encoding a 55-amino-acid polypeptide was found downstream of and in the same operon as acdA. Transformants containing this ORF2 became resistant to acidocin A, suggesting that ORF2 encodes an immunity function for acidocin A. The 7.2-kb SacI-XbaI fragment containing the upstream region of acdA of pLA9201 was necessary for acidocin A expression in the acidocin A-deficient mutant, L. acidophilus TK9201-1, and other Lactobacillus strains.  相似文献   

15.
In this paper we present the complete nucleotide sequence of the bacteriocin gene of plasmid Clo DF13. According to the predicted aminoacid sequence the bacteriocin, cloacin DF13, consists of 561 aminoacids and has a molecular weight of 59,293 D. To obtain insight into the structure and function of specific parts of the cloacin molecule, we constructed a hydration profile and we predicted the secondary structure of the protein. According to our predictions, the N-terminus of cloacin DF13 (corresponding to the first 150-180 aminoacids) is relatively hydrophobic and is rich in glycine residues. The data obtained support previous findings that the N-terminal part of cloacin DF13 is involved in translocation of this protein across the cell membrane. The C-terminal part of the cloacin protein is rich in positively charged aminoacids; this might reflect the RNase activity located within this domain. A comparison of the bacteriocin genes and corresponding proteins of Clo DF13 and Col E1 did not reveal any homology at the level of either the nucleotide or the aminoacid sequence. The codon usage of both genes, however, exhibits striking similarities. The sequence data obtained during this study enabled us to present the nucleotide sequence of the entire cloacin operon. The structure of this operon and the regulation of expression of the genes, located within this operon, is discussed.  相似文献   

16.
In this study, the plasmid content and bacteriocin production of natural isolates of lactococci were investigated. Five bacteriocin producing lactococcal strains (Lactococcus lactis subsp. lactis BGMN1-2, BGMN1-3, BGMN1-5, BGMN1-6, and BGMN2-7) were isolated as nonstarter microflora of semi-hard homemade cheese and characterized. All isolates contained a number of plasmids. It was shown that lcnB structural genes for bacteriocin lactococcin B were located on large plasmids in all isolates. In the strains BGMN1-3 and BGMN1-5 proteinase prtP genes collocated with lcnB. Furthermore, these strains produced two additional bacteriocins (LsbA and LsbB) with genes responsible for their production and immunity located on the small rolling circle-replicating plasmid pMN5. Using deletion experiments of pMN5, minimal replicon of the plasmid and involvement of a bacteriocin locus in plasmid maintenance were identified. In addition, plasmid curing experiments showed that genes for catabolism or transport of 10 carbohydrates in the strain BGMN1-5 were plasmid located.  相似文献   

17.
Southern hybridization and PCR analysis were used to show that Lactococcus lactis IL1403, a plasmid-free strain that does not produce bacteriocin, contains genes on its chromosome that are highly homologous to lcnC and lcnD and encode the lactococcin secretion and maturation system. The lcnC and lcnD homologs on the chromosome of IL1403 were interrupted independently by Campbell-type integrations. Both insertion mutants were unable to secrete active lactococcin. Part of the chromosomal lcnC gene was cloned and sequenced. Only a few nucleotide substitutions occurred, compared with the plasmid-encoded lcnC gene, and these did not lead to changes in the deduced amino acid sequence. No genes homologous to those for lactococcin A, B, or M could be detected in IL1403, and the strain does not produce bacteriocin activity.  相似文献   

18.
19.
The partial nucleotide sequence of a Lactococcus lactis subsp. lactis ADRIA 85LO30 bacteriocin-producing operon was determined. The first two open reading frames of the operon are necessary to get bacteriocin expression in L. lactis IL1403R.  相似文献   

20.
AIMS: To characterize a minimal bacteriocin operon of Prevotella nigrescens ATCC 25261. METHODS AND RESULTS: A genomic DNA library of Pr. nigrescens ATCC 25261 was constructed and screened for bacteriocin production by an agar overlay assay. Sequence analysis of the bacteriocin-producing recombinant plasmid, pGP2, has shown that the insert DNA consists of 4868 base pairs, termed nig locus. There is a cluster of four genes within the nig locus, respectively designated nigA, B, C and D. Deleting 160 nucleotides at the 3'-end of nigAB resulted in loss of bacteriocin production, indicating that nigAB may belong to a bacteriocin operon. nigA is thought to be the bacteriocin gene, while nigB may encode an immunity protein. Escherichia coli containing pGP2 expressed the bacteriocin, which is similar in size, antimicrobial activity, and biochemical properties to that purified from Pr. nigrescens ATCC 25261. CONCLUSION: nig Locus is a chromosomal fragment of Pr. nigrescens ATCC 25261, consisting of 4868 base pairs, and has been proved to be important for bacteriocin production. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of the successful cloning and expression of the bacteriocin from Pr. nigrescens ATCC 25261 into E. coli. This will facilitate the construction of bacteriocin analogues and permit investigation of their structure/function relationships.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号