首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: This study aims to investigate the effect of different kinds of food products enriched with a combination of two potential probiotic strains, Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502®, on bowel habits of healthy adults. Methods and Results: Fifty healthy volunteers took part in a double‐blind placebo probiotic feeding study (25 fed probiotics, 25 fed placebo) for 12 weeks. Each volunteer ingested daily one or more food products enriched with a combination of the two potential probiotic strains (probiotic group) or the same food products without the probiotics (control group). Faecal samples were collected before, at the end and 2 weeks later the intervention period, and some of the main groups of faecal bacteria were enumerated by plate count and real‐time PCR. Questionnaires on bowel habits were submitted to volunteers. After the intervention, a significant increase in faecal lactobacilli and bifidobacteria were observed in the probiotic group, and stool frequency and stool volume were higher in the probiotic group than in the placebo group. Conclusions: Daily consumption of food products enriched with the two potential probiotic strains, Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502®, contributes to improve intestinal microbiota with beneficial properties and enhances bowel habits of healthy adults. Significance and Impact of the Study: The study revealed that Lact. rhamnosus IMC 501® and Lact. paracasei IMC 502® exert a positive effect, in terms of improved bowel habits, on healthy adults.  相似文献   

2.
The aim of this study was to evaluate the effect of Lactobacillus rhamnosus IMC 501® and Lactobacillus paracasei IMC 502® on oxidative stress in athletes during a four-week period of intense physical activity. Two groups of twelve subjects each were selected for this analysis. The first group consumed a daily dose of a mixture of the two probiotic strains (1:1 L. rhamnosus IMC 501® and L. paracasei IMC 502®; ~109 cells/day) for 4 weeks. The second group (control) did not consume any supplements during the 4 weeks. Blood samples collected immediately before and after the supplementation were analyzed, and plasma levels of reactive oxygen metabolites and biological antioxidant potential were determined. Faeces were also collected and analyzed before and at the end of the probiotic supplementation. Antioxidative activity and oxidative stress resistance of the two strains were determined in vitro. Results demonstrated that intense physical activity induced oxidative stress and that probiotic supplementation increased plasma antioxidant levels, thus neutralizing reactive oxygen species. The two strains, L. rhamnosus IMC 501® and L. paracasei IMC 502®, exert strong antioxidant activity. Athletes and all those exposed to oxidative stress may benefit from the ability of these probiotics to increase antioxidant levels and neutralize the effects of reactive oxygen species.  相似文献   

3.

The effects of 50–150 gray electron-beam irradiation on the biofilm-formation ability and cell surface hydrophobicity of the commercial strain, Lactobacillus acidophilus DDS®-1, from Lacto-G (a marketed synbiotic formulation) and the putative probiotic, L. rhamnosus Vahe, were evaluated. No significant changes in cell surface hydrophobicity were found after irradiation, while increases in biofilm-formation abilities were documented for both investigated microorganisms 0.22 ± 0.03 vs. 0.149 ± 0.02 (L. rhamnosus Vahe, 150 Gy) and 0.218 ± 0.021 vs. 0.17 ± 0.012 (L. acidophilus DDS®-1, 150 Gy). Given this, the use of electron-beam irradiation (50–100 Gy) for the treatment of L. rhamnosus Vahe and L. acidophilus DDS®-1 cells may be considered in product sterilization, quality improvement, and packaging practices.

  相似文献   

4.

The present study investigated the effect of enriched Artemia with Bacillus subtilis on growth performance, reproductive factors, proximate composition, intestinal microflora, and resistance to Aeromonas hydrophila of ornamental fish, Poecilia latipinna. Using a completely randomized design, the experiment included three groups. The first group was fed with commercial food without any probiotic. The second group was fed with unenriched Artemia, and the last group consumed long-time enriched Artemia with Bacillus subtilis. The bacteria B. subtilis with a density of 1 × 105 CFU mL−1 was added daily to Artemia culture medium. The total microflora and Bacillus subtilis counts were significantly increased in enriched Artemia compared to the unenriched group (P < 0.05). In fish fed groups, growth factors did not show any significant difference (P > 0.05). The maximum relative fecundity (28.65 ± 2.52 egg number g−1), fry production (62.93 ± 4.6 individual per female), and fry survival (70.97 ± 1.56%) obtained in the third group were found to be significantly more than those in the first and the second groups. Moreover, intestinal bacterial count for Bacillus revealed that the higher concentration of bacteria was significantly related to the third group (6.24 ± 0.11 log CFU g−1) (P < 0.05). Maximum protein and fat contents were observed in fish fed with Bacillus-enriched Artemia; however, no significant difference was found between control and unenriched Artemia groups (P > 0.05). The highest amount of ash was observed in fish fed with commercial food without any probiotic (P < 0.05). At the end of the feeding period, each of the three groups along with positive group (oxytetracycline 100 mg kg−1 of commercial food) was exposed to A. hydrophila (BCCM5/LMG3770) bacteria intraperitoneally. Based on the results, the lowest cumulative mortality was significantly found in group three (68.75 ± 3.6%) and positive group (62.5 ± 7.0%) compared to control and unenriched Artemia groups (P < 0.05). Hence, B. subtilis with a concentration of 1 × 105 CFU mL−1 during the period of Artemia culturing can improve the reproductive parameters, intestinal microflora, and resistance to pathogenic bacteria of Poecilia latipinna.

  相似文献   

5.
Probiotic Lactobacillus strains are widely used to benefit human and animal health, although the exact mechanisms behind their interactions with the host and the microbiota are largely unknown. Fluorescent tagging of live probiotic cells is an important tool to unravel their modes of action. In this study, the implementation of different heterologously expressed fluorescent proteins for the labelling of the model probiotic strains Lactobacillus rhamnosusGG (gastrointestinal) and Lactobacillus rhamnosusGR‐1 (vaginal) was explored. Heterologous expression of mTagBFP2 and mCherry resulted in long‐lasting fluorescence of L. rhamnosusGG and GR‐1 cells, using the nisin‐controlled expression (NICE) system. These novel fluorescent strains were then used to study in vitro aspects of their microbe–microbe and microbe–host interactions. Lactobacillus rhamnosusGG and L. rhamnosusGR‐1 expressing mTagBFP2 and mCherry could be visualized in mixed‐species biofilms, where they inhibited biofilm formation by Salmonella Typhimurium–gfpmut3 expressing the green fluorescent protein. Likewise, fluorescent L. rhamnosusGG and L. rhamnosusGR‐1 were implemented for the visualization of their adhesion patterns to intestinal epithelial cell cultures. The fluorescent L. rhamnosus strains developed in this study can therefore serve as novel tools for the study of probiotic interactions with their environment.  相似文献   

6.
The rearing environment of first-feeding turbot larvae, usually with high larvae densities and organic matter concentrations, may promote the growth of opportunistic pathogenic Vibrionaceae bacteria, compromising the survival of the larvae. The aim of this study was to assess the effectiveness of the biofilm-forming probiotic Phaeobacter 27-4 strain grown on a ceramic biofilter (probiofilter) in preventing Vibrio anguillarum infections in turbot larvae. In seawater with added microalgae and maintained under turbot larvae rearing conditions, the probiofilter reduced the total Vibrionaceae count and the concentration of V. anguillarum, which was undetectable after 144 h by real-time PCR. The probiofilter also improved the survival of larvae challenged with V. anguillarum, showing an accumulated mortality similar to that of uninfected larvae (35–40 %) and significantly (p?<?0.05) lower than that of infected larvae with no probiofilter (76 %) due to a decrease in the pathogen concentration and in total Vibrionaceae. Furthermore, the probiofilter improved seawater quality by decreasing turbidity. Phaeobacter 27-4 released from the probiofilters was able to survive in the seawater for at least 11 days. The bacterial diversity in the larvae, analysed by denaturing gradient gel electrophoresis, was low, as in the live prey (rotifers), and remained unchanged in the presence of V. anguillarum or the probiofilter; however, the probiofilter reduced the bacterial carrying capacity of the seawater in the tanks. Phaeobacter-grown biofilters can constantly inoculate probiotics into rearing tanks and are therefore potentially useful for bacterial control in both open and recirculating industrial units.  相似文献   

7.
The aims of this study were to examine long-term growth interactions of five probiotic strains (Lactobacillus casei 01, Lactobacillus plantarum HA8, Lactobacillus rhamnosus GG, Lactobacillus reuteri ATCC 55730 and Bifidobacterium lactis Bb12) either alone or in combination with Propionibacterium jensenii 702 in a co-culture system and to determine their adhesion ability to human colon adenocarcinoma cell line Caco-2. Growth patterns of probiotic Lactobacillus strains were not considerably affected by the presence of P. jensenii 702, whereas lactobacilli exerted a strong antagonistic action against P. jensenii 702. In the co-culture of Bif. lactis Bb12 and P. jensenii 702, a significant synergistic influence on growth of both bacteria was observed (P < 0.05). The results of adhesion assay showed that when probiotic strains were tested in combination, there was evidence of an associated effect on percentage adherence. However, in most cases these differences were not statistically significant (P < 0.05). Adhesion percentage of Lb. casei 01 and Lb. rhamnosus GG both decreased significantly in the presence of P. jensenii 702 compared to their adhesion levels when alone (P < 0.05). These results show that the survival and percentage adhesion of some probiotic strains may be influenced by the presence of other strains and this should be considered when formulating in the probiotic products.  相似文献   

8.
The objective of this study was to examine the inhibitory effect of probiotic strains on pathogenic biofilm formation in terms of competition, exclusion and displacement. Probiotic strains (Lactobacillus acidophilus KACC 12419, Lact. casei KACC 12413, Lactparacasei KACC 12427 and Lactrhamnosus KACC 11953) and pathogens (Salmonella Typhimurium KCCM 40253 and Listeria monocytogenes KACC 12671) were used to evaluate the auto‐aggregation, hydrophobicity and biofilm formation inhibition. The highest auto‐aggregation abilities were observed in Lactrhamnosus (17·5%), Lactcasei (17·2%) and Lactacidophilus (15·1%). Salm. Typhimurium had the highest affinity to xylene, showing the hydrophobicity of 53·7%. The numbers of Lmonocytogenes biofilm cells during the competition, exclusion and displacement assays were effectively reduced by more than 3 log when co‐cultured with Lactparacasei and Lactrhamnosus. The results suggest that probiotic strains can be used as alternative way to effectively reduce the biofilm formation in pathogenic bacteria through competition, exclusion and displacement.

Significance and Impact of the Study

This study provides new insight into biofilm control strategy based on probiotic approach. Probiotic strains effectively inhibited the biofilm formation of Listeria monocytogenes through the mechanisms of competition, exclusion and displacement. These findings contribute to better understand the probiotic‐mediated competition, exclusion and displacement in biofilm formation by pathogens.  相似文献   

9.
Lactic acid bacteria (LAB) are generally sensitive to hydrogen peroxide (H2O2), Lactobacillus sakei YSI8 is one of the very few LAB strains able to degrade H2O2 through the action of a heme-dependent catalase. Lactobacillus rhamnosus strains are very important probiotic starter cultures in meat product fermentation, but they are deficient in catalase. In this study, the effect of heterologous expression of L. sakei catalase gene katA in L. rhamnosus on its oxidative stress resistance was tested. The recombinant L. rhamnosus AS 1.2466 was able to decompose H2O2 and the catalase activity reached 2.85 μmol H2O2/min/108 c.f.u. Furthermore, the expression of the katA gene in L. rhamnosus conferred enhanced oxidative resistance on the host. The survival ratios after short-term H2O2 challenge were increased 600 and 104-fold at exponential and stationary phase, respectively. Further, viable cells were 100-fold higher in long-term aerated cultures. Simulation experiment demonstrated that both growth and catalase activity of recombinant L. rhamnosus displayed high stability under environmental conditions similar to those encountered during sausage fermentation.  相似文献   

10.
By incorporating the free‐swimming nematode Turbatrix aceti into early feeding regimes of the European whitefish Coregonus maraena, the suitability of this nematode species was investigated as an alternative to Artemia nauplii. During a 14‐day feeding trial in a total of 25 aquaria each 1.7 L (each treatment n = 5, 255 larvae/tank) T. aceti was used either as the sole live food or in combination with Artemia nauplii or microdiet to determine the effect of T. aceti on growth performance and survival rate of C. maraena. By analysing the fatty acid composition of T. aceti prior to and after enrichment with INVE spresso® it was investigated whether the amount of n3‐polyunsaturated fatty acids (n3‐PUFA) in T. aceti could be further enhanced. Supplementation of Artemia nauplii with T. aceti increased growth significantly within the first 5 days of rearing in comparison to the non‐supplemented food treatments (14.39 ± 0.15 mm compared to 13.44 ± 0.18 mm; mean ± SE). However, growth and survival of juvenile C. maraena on nematode‐supplemented Artemia nauplii did not differ significantly from non‐supplemented Artemia nauplii at the end of the 14‐day rearing period (15.22 ± 0.15 mm compared to 14.86 ± 0.24 mm). All feeding treatments containing Artemia nauplii showed significantly higher growth and lower mortality at the end of the experiment in comparison to diets containing only the microdiet or T. aceti or a combination thereof. The overall low performance of T. aceti alone can most likely be explained by an insufficient capacity of C. maraena to digest this nematode species efficiently. Enrichment with INVE spresso® successfully increased the proportion of DHA in the T. aceti tissue. The results reveal that T. aceti cannot be considered a full alternative to Artemia nauplii, at least not in the rearing of C. maraena, but might be a useful vector of essential fatty acids within the early rearing period of this and potentially other fish species when provided as live food along with Artemia nauplii.  相似文献   

11.
Marine nitrogen-fixing bacteria distributed in the eelgrass bed and seawater of Aburatsubo Inlet, Kanagawa, Japan were investigated using anaerobic and microaerobic enrichment culture methods. The present enrichment culture methods are simple and efficient for enumeration and isolation of nitrogen-fixing bacteria from marine environments. Mostprobable-number (MPN) values obtained for nitrogen-fixing bacteria ranged from 1.1×102 to 4.6×102/ml for seawater, 4.0×104 to 4.3×105/g wet wt for eelgrass-bed sediment, and 2.1 × 105 to 1.2 × 107/g wet wt for eelgrass-root samples. More than 100 strains of halophilic, nitrogen-fixing bacteria belonging to the family Vibrionaceae were isolated from the MPN tubes. These isolates were roughly classified into seven groups on the basis of their physiological and biochemical characteristics. The majority of the isolates were assigned to the genusVibrio and one group to the genusPhotobacterium. However, there was also a group that could not be identified to the generic level. All isolates expressed nitrogen fixation activities under anaerobic conditions, and no organic growth factors were required for their activities.  相似文献   

12.
In clinical studies, probiotic bacteria have decreased the counts of salivary mutans streptococci (MS). We compared the effects of probiotic Lactobacillus strains on the biofilm formation of Streptococcus mutans. The bacterial strains used included four S. mutans strains (reference strains NCTC 10449 and Ingbritt and clinical isolates 2366 and 195) and probiotic strains Lactobacillus rhamnosus GG, L. plantarum 299v, and L. reuteri strains PTA 5289 and SD2112. The ability of MS to adhere and grow on a glass surface, reflecting biofilm formation, was studied in the presence of the lactobacilli (LB). The effect of LB culture supernatants on the viability of the MS was studied as well. All of the LB inhibited the biofilm formation of the clinical isolates of MS (P < 0.001). The biofilm formation of the reference strains of MS was also inhibited by the LB, but L. plantarum and L. reuteri PTA 5289 showed a weaker inhibition when compared to L. reuteri SD2112 and L. rhamnosus GG. Viable S. mutans cells could be detected in the biofilms and culture media only when the experiments were performed with the L. reuteri strains. The L. reuteri strains were less efficient in killing the MS also in the tests performed with the culture supernatants. The pHs of the supernatants of L. reuteri were higher compared to those of L. rhamnosus GG and L. plantarum; P < 0.001. In conclusion, our results demonstrated that four commonly used probiotics interfered with S. mutans biofilm formation in vitro, and that the antimicrobial activity against S. mutans was pH-dependent.  相似文献   

13.

Immobilization of Lactobacillus rhamnosus ATCC7469 in poly(vinyl alcohol)/calcium alginate (PVA/Ca-alginate) matrix using “freezing–thawing” technique for application in lactic acid (LA) fermentation was studied in this paper. PVA/Ca-alginate beads were made from sterile and non-sterile PVA and sodium alginate solutions. According to mechanical properties, the PVA/Ca-alginate beads expressed a strong elastic character. Obtained PVA/Ca-alginate beads were further applied in batch and repeated batch LA fermentations. Regarding cell viability, L. rhamnosus cells survived well rather sharp immobilization procedure and significant cell proliferation was observed in further fermentation studies achieving high cell viability (up to 10.7 log CFU g−1) in sterile beads. In batch LA fermentation, the immobilized biocatalyst was superior to free cell fermentation system (by 37.1%), while the highest LA yield and volumetric productivity of 97.6% and 0.8 g L−1 h−1, respectively, were attained in repeated batch fermentation. During seven consecutive batch fermentations, the biocatalyst showed high mechanical and operational stability reaching an overall productivity of 0.78 g L−1 h−1. This study suggested that the “freezing–thawing” technique can be successfully used for immobilization of L. rhamnosus in PVA/Ca-alginate matrix without loss of either viability or LA fermentation capability.

  相似文献   

14.

Multidrug resistance (MDR) is a serious health threat throughout the world resulting in reduced efficacy of antibacterial, antiparasitic, antiviral, and antifungal drugs. One of the most promising concepts that may represent a good alternative to antibiotics can be the use of bacteriocins obtained from lactic acid bacteria. The L. rhamnosus BTK 20-12 strain was isolated from traditional Armenian naturally fermented salted cheese. The probiotic potential of the strain was approved. It was shown that strain produced at less two bacteriocins (BCN 1 and BCN 2) with different molecular weight (1427 Da and 602.6 Da, respectively). Bacteriocins inhibited the growth of multidrug-resistant bacteria of different etiologies and belong to different taxonomic groups with diverse efficiency and it depends on properties of bacteriocins, as well as from isolation sources of pathogens. Thus, bacteriocins of L. rhamnosus BTK 20-12 have protein-like nature and a broad range of activity and are excellent candidates for the development of new prophylactic and therapeutic substances to complement or replace conventional antibiotics.

  相似文献   

15.
Temperature modulates the metabolism in both fish and bacteria and therefore the effect of probiotic bacteria on its host may vary accordingly. The current study aim was to evaluate the effect of probiotic supplementation (Bacillus sp., Lactobacillus sp., Enterococcus sp., Pediococcus sp.) in juvenile seabass, Dicentrarchus labrax, when reared under different temperatures (17, 20 and 23°C). A control diet was tested against a probiotic‐supplemented diet, with a concentration of 3 × 109 CFU probiotic/kg diet. Antioxidant responses (TG, GSH, GSSG, GR, CAT and GSTs) and lipid peroxidation (LPO) were evaluated after 70 days of dietary probiotic supplementation. An effect of temperature was observed on LPO, which increased significantly in fish reared at 17°C (p < .05) compared to the 20 and 23°C groups. Total glutathione (TG) was significantly higher in the probiotic treatments in fish reared at 17 and 20°C (p < .05). In addition, a probiotic temperature interaction was observed for TG, reduced glutathione (GSH) levels, and for reduction of the oxidized glutathione ratio (GSH/GSSG; p < .05). In conclusion, the current study showed a strong temperature effect on oxidative stress responses, with an anti‐oxidant role of dietary probiotic supplementation at different rearing temperatures.  相似文献   

16.

In the current study, we investigated the effect of a probiotic bacterium (Lactobacillus rhamnosus ATCC 7469) microencapsulated with alginate and hi-maize starch and coated with chitosan on improving growth factors, body composition, blood chemistry, and the immune response of rainbow trout (initial weight: 18.41 ± 0.32 g). Four experimental diets were formulated to feed fish for 60 days. They were control diet without any additive (C), diet added with beads without probiotic (E), a probiotic sprayed to the diet (L.r), and encapsulated probiotic supplemented diet (E-L.r). The results indicated that feeding with E-Lr significantly improved weight gain (84.98 g) and feed conversion ratio (0.95) compared to the other groups (P < 0.05). Also, fish fed E-Lr diet had a significantly higher value of whole-body protein (17.51%), total protein in the blood (4.98 g/dL), lysozyme (30.66 U/mL), alternative complement pathway hemolytic activity (134 U/mL), superoxide dismutase (203 U/mg protein), and catalase (528.33 U/mg protein) (P < 0.05) as compared to those fed the control diet. Similarly, a higher relative expression of immune-related genes such as interleukin-1 (Il-1) and tumor necrosis factor-alpha (TNF-1α) were reported in those fed E-L.r and L.r diets respectively. Interestingly, the fish fed dietary E-L.r had a significantly lower value of lipid in the whole body (4.82%) and cholesterol in the blood (160.67%) in comparison with those fed the control diet (P < 0.05). At the end of the experiment, all groups were challenged by Yersinia ruckeri where the survival rate of rainbow trout fed dietary E-L.r (70.36%) was statistically higher than that of the others (P < 0.05). Overall, the results suggested that encapsulated probiotic Lact. rhamnosus ATCC 7469 acted better than unencapsulated probiotic and has a potential to improve growth performance, flesh quality, and the immune response of rainbow trout.

  相似文献   

17.

Clostridioides difficile infections (CDI) result from antibiotic use and cause severe diarrhea which is life threatening and costly. A specific probiotic containing Lactobacillus acidophilus CL1285, Lacticaseibacillus casei LBC80R, and Lacticaseibacillus rhamnosus CLR2 has demonstrated a strong inhibitory effect on the growth of several nosocomial C. difficile strains by production of antimicrobial metabolites during fermentation. Though there are several lactobacilli shown to inhibit C. difficile growth by processes relying on acidification, this probiotic has demonstrated potency for CDI prevention among hospitalized patients. Here, we describe the acid-dependent and independent mechanisms by which these strains impair the cytotoxicity of a hypervirulent strain, C. difficile R20291 (CD). These bacteria were co-cultured in a series of experiments under anaerobic conditions in glucose-rich and no-sugar medium to inhibit or stimulate CD toxin production, respectively. In glucose-rich medium, there was low CD toxin production, but sufficient amounts to cause cytotoxic damage to human fibroblast cells. In co-culture, there was acidification by the lactobacilli resulting in growth inhibition as well as ≥ 99% reduced toxin A and B production and no observable cytotoxicity. In the absence of glucose, CD produced much more toxin. In co-culture, the lactobacilli did not acidify the medium and CD growth was unaffected; yet, the amount of detected toxin A and B was decreased by 20% and 41%, respectively. Despite the high concentration of toxin, cells exposed to the supernatant from the co-culture were able to survive. These results suggest that in addition to known acid-dependent effects, the combination of L. acidophilus CL1285, L. casei LBC80R, and L. rhamnosus CLR2 can interfere with CD pathogenesis without acidification: (1) reduced toxin A and B production and (2) toxin neutralization. This might explain the strain specificity of this probiotic in potently preventing C. difficile-associated diarrhea in antibiotic-treated patients compared with other probiotic formulae.

  相似文献   

18.

Background  

Enterohemorrhagic E. coli (EHEC), a subgroup of Shiga toxin (Stx) producing E. coli (STEC), may cause severe enteritis and hemolytic uremic syndrome (HUS) and is transmitted orally via contaminated foods or from person to person. The infectious dose is known to be very low, which requires most of the bacteria to survive the gastric acid barrier. Acid resistance therefore is an important mechanism of EHEC virulence. It should also be a relevant characteristic of E. coli strains used for therapeutic purposes such as the probiotic E. coli Nissle 1917 (EcN). In E. coli and related enteric bacteria it has been extensively demonstrated, that the alternative sigma factor σS, encoded by the rpoS gene, acts as a master regulator mediating resistance to various environmental stress factors.  相似文献   

19.
It is generally believed that probiotic bacteria need to survive gastrointestinal transit to exert a health-promoting effect. In this study, a genuine luxS mutant and a luxS mutant containing unknown suppressor mutations of the probiotic strain Lactobacillus rhamnosus GG were compared to the wild type for survival and persistence in the murine gastrointestinal tract. The LuxS enzyme, catalyzing the production of the autoinducer-2 signaling molecule, also forms an integral part of the activated methyl cycle and the metabolism of methionine and cysteine. The genuine luxS mutant CMPG5412 showed drastically reduced persistence in mice, which was related to less survival in simulated gastric juice, indicating that LuxS metabolism is crucial for the gastric stress resistance of L. rhamnosus GG. The suppressor mutations in the other luxS mutant, CMPG5413, appear to compensate for the metabolic defects of the luxS mutation and to restore the resistance to gastric juice but cause a defect in adherence, biofilm formation, and exopolysaccharide production. The shorter residence time of this suppressor mutant in the murine gastrointestinal tract indicates a role for biofilm formation and exopolysaccharides in the persistence capacity of L. rhamnosus GG.  相似文献   

20.
The objective was to carry out cytotoxicity assays in Vero cells and cytokines analyses in Balb/c mice as safety assessments to evaluate the probiotic mixture (M) Saccharomyces cerevisiae RC016 (Sc) and Lactobacillus rhamnosus RC007 (Lr) for use as feed additive. Vero cells (104 cells per well) were exposed to Sc (2·08 × 107, 2·08 × 106; 2·08 × 105 cells per ml), Lr (8·33 × 107; 8·33 × 106; 8·33 × 105 cells per ml) and their M (1 : 1). Sc concentrations did not affect the Vero cells viability; in contrast, they were lower when exposed to Lr (P ˂ 0·0001). Vero cells showed increasing viability with M decreasing concentrations (91% viability with M2). Control BALB/c mice received only phosphate buffer saline and the others received the M. The IL-10, IL-6 and TNFα concentrations from intestinal fluid were analysed and no significant differences were observed among treatments. The same occurred with the ratio between IL-10/TNF-α. Beneficial effects of probiotics are associated with the regulation of the excessive inflammatory response; it is desirable they can modulate the cytokines production only under pathological conditions. Here, M administration to healthy mice did not induce negative side effects and expands the knowledge about beneficial effects of using probiotic microorganisms in mixture for feed additives development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号