首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolution balances DNA replication speed and accuracy to optimize replicative fitness and genetic stability. There is no selective pressure to improve DNA replication fidelity beyond the background mutation rate from other sources, such as DNA damage. However, DNA polymerases remain amenable to amino acid substitutions that lower intrinsic error rates. Here, we review these ‘antimutagenic’ changes in DNA polymerases and discuss what they reveal about mechanisms of replication fidelity. Pioneering studies with bacteriophage T4 DNA polymerase (T4 Pol) established the paradigm that antimutator amino acid substitutions reduce replication errors by increasing proofreading efficiency at the expense of polymerase processivity. The discoveries of antimutator substitutions in proofreading-deficient ‘mutator’ derivatives of bacterial Pols I and III and yeast Pol δ suggest there must be additional antimutagenic mechanisms. Remarkably, many of the affected amino acid positions from Pol I, Pol III, and Pol δ are similar to the original T4 Pol substitutions. The locations of antimutator substitutions within DNA polymerase structures suggest that they may increase nucleotide selectivity and/or promote dissociation of primer termini from polymerases poised for misincorporation, leading to expulsion of incorrect nucleotides. If misincorporation occurs, enhanced primer dissociation from polymerase domains may improve proofreading in cis by an intrinsic exonuclease or in trans by alternate cellular proofreading activities. Together, these studies reveal that natural selection can readily restore replication error rates to sustainable levels following an adaptive mutator phenotype.  相似文献   

2.
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1‐1 allele (Takayama et al., 2003) and a novel psf1‐100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error‐prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error‐free processing of terminal mismatches created by Pol epsilon.  相似文献   

3.
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed.  相似文献   

4.
Defective DNA replication can result in substantial increases in the level of genome instability. In the yeast Saccharomyces cerevisiae, the pol3-t allele confers a defect in the catalytic subunit of replicative DNA polymerase delta that results in increased rates of mutagenesis, recombination, and chromosome loss, perhaps by increasing the rate of replicative polymerase failure. The translesion polymerases Pol eta, Pol zeta, and Rev1 are part of a suite of factors in yeast that can act at sites of replicative polymerase failure. While mutants defective in the translesion polymerases alone displayed few defects, loss of Rev1 was found to suppress the increased rates of spontaneous mutation, recombination, and chromosome loss observed in pol3-t mutants. These results suggest that Rev1 may be involved in facilitating mutagenic and recombinagenic responses to the failure of Pol delta. Genome stability, therefore, may reflect a dynamic relationship between primary and auxiliary DNA polymerases.  相似文献   

5.
Cellular DNA polymerases belong to several families and carry out different functions. Highly accurate replicative DNA polymerases play the major role in cell genome replication. A number of new specialized DNA polymerases were discovered at the turn of XX–XXI centuries and have been intensively studied during the last decade. Due to the special structure of the active site, these enzymes efficiently perform synthesis on damaged DNA but are characterized by low fidelity. Human DNA polymerase iota (Pol ι) belongs to the Y-family of specialized DNA polymerases and is one of the most error-prone enzymes involved in DNA synthesis. In contrast to other DNA polymerases, Pol ι is able to use noncanonical Hoogsteen interactions for nucleotide base pairing. This allows it to incorporate nucleotides opposite various lesions in the DNA template that impair Watson-Crick interactions. Based on the data of X-ray structural analysis of Pol ι in complexes with various DNA templates and dNTP substrates, we consider the structural peculiarities of the Pol ι active site and discuss possible mechanisms that ensure the unique behavior of the enzyme on damaged and undamaged DNA.  相似文献   

6.
Agrobacterium tumefaciens-mediated transformation has been for decades the preferred tool to generate transgenic plants. During this process, a T-DNA carrying transgenes is transferred from the bacterium to plant cells, where it randomly integrates into the genome via polymerase theta (Polθ)-mediated end joining (TMEJ). Targeting of the T-DNA to a specific genomic locus via homologous recombination (HR) is also possible, but such gene targeting (GT) events occur at low frequency and are almost invariably accompanied by random integration events. An additional complexity is that the product of recombination between T-DNA and target locus may not only map to the target locus (true GT), but also to random positions in the genome (ectopic GT). In this study, we have investigated how TMEJ functionality affects the biology of GT in plants, by using Arabidopsis thaliana mutated for the TEBICHI gene, which encodes for Polθ. Whereas in TMEJ-proficient plants we predominantly found GT events accompanied by random T-DNA integrations, GT events obtained in the teb mutant background lacked additional T-DNA copies, corroborating the essential role of Polθ in T-DNA integration. Polθ deficiency also prevented ectopic GT events, suggesting that the sequence of events leading up to this outcome requires TMEJ. Our findings provide insights that can be used for the development of strategies to obtain high-quality GT events in crop plants.  相似文献   

7.
The replisome catalyses DNA synthesis at a DNA replication fork. The molecular behaviour of the individual replisomes, and therefore the dynamics of replication fork movements, in growing Escherichia coli cells remains unknown. DNA combing enables a single‐molecule approach to measuring the speed of replication fork progression in cells pulse‐labelled with thymidine analogues. We constructed a new thymidine‐requiring strain, eCOMB (E. coli for combing), that rapidly and sufficiently incorporates the analogues into newly synthesized DNA chains for the DNA‐combing method. In combing experiments with eCOMB, we found the speed of most replication forks in the cells to be within the narrow range of 550–750 nt s?1 and the average speed to be 653 ± 9 nt s?1 (± SEM). We also found the average speed of the replication fork to be only 264 ± 9 nt s?1 in a dnaE173eCOMB strain producing a mutant‐type of the replicative DNA polymerase III (Pol III) with a chain elongation rate (300 nt s?1) much lower than that of the wild‐type Pol III (900 nt s?1). This indicates that the speed of chain elongation by Pol III is a major determinant of replication fork speed in E. coli cells.  相似文献   

8.
Pol32 is an accessory subunit of the replicative DNA Polymerase δ and of the translesion Polymerase ζ. Pol32 is involved in DNA replication, recombination and repair. Pol32’s participation in high- and low-fidelity processes, together with the phenotypes arising from its disruption, imply multiple roles for this subunit within eukaryotic cells, not all of which have been fully elucidated. Using pol32 null mutants and two partial loss-of-function alleles pol32rd1 and pol32rds in Drosophila melanogaster, we show that Pol32 plays an essential role in promoting genome stability. Pol32 is essential to ensure DNA replication in early embryogenesis and it participates in the repair of mitotic chromosome breakage. In addition we found that pol32 mutantssuppress position effect variegation, suggesting a role for Pol32 in chromatin architecture.  相似文献   

9.
When cyclobutane pyrimidine dimers stall DNA replication by DNA polymerase (Pol) δ or ε, a switch occurs to allow translesion synthesis by DNA polymerase η, followed by another switch that allows normal replication to resume. In the present study, we investigate these switches using Saccharomyces cerevisiae Pol δ, Pol ε and Pol η and a series of matched and mismatched primer templates that mimic each incorporation needed to completely bypass a cissyn thymine–thymine (TT) dimer. We report a complementary pattern of substrate use indicating that enzymatic switching involving localized translesion synthesis by Pol η and mismatch excision and polymerization by a major replicative polymerase can account for the efficient and accurate dimer bypass known to suppress sunlight-induced mutagenesis and skin cancer.  相似文献   

10.
Helicobacter pylori, a human pathogen infecting about half of the world population, is characterised by its large intraspecies variability. Its genome plasticity has been invoked as the basis for its high adaptation capacity. Consistent with its small genome, H. pylori possesses only two bona fide DNA polymerases, Pol I and the replicative Pol III, lacking homologues of translesion synthesis DNA polymerases. Bacterial DNA polymerases I are implicated both in normal DNA replication and in DNA repair. We report that H. pylori DNA Pol I 5'- 3' exonuclease domain is essential for viability, probably through its involvement in DNA replication. We show here that, despite the fact that it also plays crucial roles in DNA repair, Pol I contributes to genomic instability. Indeed, strains defective in the DNA polymerase activity of the protein, although sensitive to genotoxic agents, display reduced mutation frequencies. Conversely, overexpression of Pol I leads to a hypermutator phenotype. Although the purified protein displays an intrinsic fidelity during replication of undamaged DNA, it lacks a proofreading activity, allowing it to efficiently elongate mismatched primers and perform mutagenic translesion synthesis. In agreement with this finding, we show that the spontaneous mutator phenotype of a strain deficient in the removal of oxidised pyrimidines from the genome is in part dependent on the presence of an active DNA Pol I. This study provides evidence for an unexpected role of DNA polymerase I in generating genomic plasticity.  相似文献   

11.
Escherichia coli dinB encodes the specialized DNA polymerase DinB (Pol IV), which is induced as part of the SOS stress-response system and functions in translesion synthesis (TLS) to relieve the replicative Pol III that is stalled at DNA lesions. As the number of DinB molecules, even in unstressed cells, is greater than that required to accomplish TLS, it is thought that dinB plays some additional physiological role. Here, we overexpressed dinB under the tightly regulable arabinose promoter and looked for a distinct phenotype. Upon induction of dinB expression, progression of the replication fork was immediately inhibited at random genomic positions, and the colony-forming ability of the cells was reduced. Overexpression of mutated dinB alleles revealed that the structural requirements for these two inhibitory effects and for TLS were distinct. The extent of in vivo inhibition displayed by a mutant DinB matched the extent of its in vitro impedance, at near-physiological concentration, of a moving Pol III. We suggest that DinB targets Pol III, thereby acting as a brake on replication fork progression. Because the brake operates when cells have excess DinB, as they do under stress conditions, it may serve as a checkpoint that modulates replication to safeguard genome stability.  相似文献   

12.
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3′→5′ exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5‐ to 4‐fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error‐producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand.  相似文献   

13.
14.
Mycoplasmas have originated from Gram-positive bacteria via rapid degenerative evolution. The results of previous investigations of mycoplasmal DNA polymerases suggest that the process of evolution has wrought a major simplification of the typical Gram-positive bacterial DNA polymerase profile, reducing it from three exonuclease (exo)-positive enzymes to a single exo-negative species. The objective of this work was to rigorousiy investigate this suggestion, focusing on the evolutionary fate of DNA polymerase III (Pol III), the enzyme which Gram-positive bacteria specifically require for replicative DNA synthesis. The approach used Mycoplasma pulmonis as the model organism and exploited structural gene cloning, enzymology, and Pol III-specific inhibitors of the HPUra class as investigative tools. Our results indicate that M. pulmonis has strongly conserved a single copy of a structural gene homologous to polC, the Gram-positive bacterial gene encoding Pol III M. pulmonis was found to possess a DNA polymerase that displays the size, primary structure, exonuclease activity, and level of HPUra sensitivity expected of a prototypical Gram-positive Pol III. The high level of sensitivity of M. pulmonis growth to Gram-positive Pol III-selective inhibitors of the HPUra type strongly suggests that Mycoplasma has conserved not only the basic structure of Pol III, but also its essential replicative function. Evidence for a second, HPUra-resistant polymerase activity in M. pulmonis is also described, indicating that the DNA polymerase composition of Mycoplasma is complex and closer to that of Gram-positive bacteria than previously thought.  相似文献   

15.
To better understand the functions and fidelity of DNA polymerase ε (Pol ε), we report here on the fidelity of yeast Pol ε mutants with leucine, tryptophan or phenylalanine replacing Met644. The Met644 side chain interacts with an invariant tyrosine that contacts the sugar of the incoming dNTP. M644W and M644L Pol ε synthesize DNA with high fidelity, but M644F Pol ε has reduced fidelity resulting from strongly increased misinsertion rates. When Msh6-dependent repair of replication errors is defective, the mutation rate of a pol2-M644F strain is 16-fold higher than that of a strain with wild-type Pol ε. In conjunction with earlier studies of low-fidelity mutants with replacements for the homologous amino acid in yeast Pol α (L868M/F) and Pol δ (L612M), these data indicate that the active site location occupied by Met644 in Pol ε is a key determinant of replication fidelity by all three B family replicative polymerases. Interestingly, error specificity of M644F Pol ε is distinct from that of L868M/F Pol α or L612M Pol δ, implying that each polymerase has different active site geometry, and suggesting that these polymerase alleles may generate distinctive mutational signatures for probing functions in vivo.  相似文献   

16.
Escherichia coli DNA polymerase III holoenzyme (HE) contains a core polymerase consisting of three subunits: α (polymerase), ε (3'-5' exonuclease), and θ. Genetic experiments suggested that θ subunit stabilizes the intrinsically labile ε subunit and, furthermore, that θ might affect the cellular amounts of Pol III core and HE. Here, we provide biochemical evidence supporting this model by analyzing the amounts of the relevant proteins. First, we show that a ΔholE strain (lacking θ subunit) displays reduced amounts of free ε. We also demonstrate the existence of a dimer of ε, which may be involved in the stabilization of the protein. Second, θ, when overexpressed, dissociates the ε dimer and significantly increases the amount of Pol III core. The stability of ε also depends on cellular chaperones, including DnaK. Here, we report that: (i) temperature shift-up of ΔdnaK strains leads to rapid depletion of ε, and (ii) overproduction of θ overcomes both the depletion of ε and the temperature sensitivity of the strain. Overall, our data suggest that ε is a critical factor in the assembly of Pol III core, and that this is role is strongly influenced by the θ subunit through its prevention of ε degradation.  相似文献   

17.
G4 DNA motifs, which can form stable secondary structures called G-quadruplexes, are ubiquitous in eukaryotic genomes, and have been shown to cause genomic instability. Specialized helicases that unwind G-quadruplexes in vitro have been identified, and they have been shown to prevent genetic instability in vivo. In the absence of these helicases, G-quadruplexes can persist and cause replication fork stalling and collapse. Translesion synthesis (TLS) and homologous recombination (HR) have been proposed to play a role in the repair of this damage, but recently it was found in the nematode Caenorhabditis elegans that G4-induced genome alterations are generated by an error-prone repair mechanism that is dependent on the A-family polymerase Theta (Pol θ). Current data point towards a scenario where DNA replication blocked at G-quadruplexes causes DNA double strand breaks (DSBs), and where the choice of repair pathway that can act on these breaks dictates the nature of genomic alterations that are observed in various organisms.  相似文献   

18.
Overexpression in mammalian cells of the error-prone DNA polymerase beta (Pol beta) has been found to increase the spontaneous mutagenesis. Here, we investigated a possible mechanism used by Pol beta to be a genetic instability enhancer: its interference in replicative DNA synthesis, which is normally catalysed by the DNA polymerases alpha, delta and epsilon. By taking advantage of the ability to incorporate efficiently into DNA the chain terminator ddCTP as well as the oxidised nucleotide 8-oxo-dGTP, we show here that purified Pol beta can compete with the replicative DNA polymerases during replication in vitro of duplex DNA when added to human cell extracts. We found that involvement of Pol beta lowers replication fidelity and results in a modified error-specificity. Furthermore, we demonstrated that involvement of Pol beta occurred during synthesis of the lagging strand. These in vitro data provide one possible explanation of how overexpression of the enzyme could perturb the genetic instability in mammalian cells. We discuss these findings within the scope of the up-regulation of Pol beta in many cancer cells.  相似文献   

19.
20.
DNA polymerase ζ (Pol ζ) and Rev1 are key players in translesion DNA synthesis. The error-prone Pol ζ can also participate in replication of undamaged DNA when the normal replisome is impaired. Here we define the nature of the replication disturbances that trigger the recruitment of error-prone polymerases in the absence of DNA damage and describe the specific roles of Rev1 and Pol ζ in handling these disturbances. We show that Pol ζ/Rev1-dependent mutations occur at sites of replication stalling at short repeated sequences capable of forming hairpin structures. The Rev1 deoxycytidyl transferase can take over the stalled replicative polymerase and incorporate an additional ‘C’ at the hairpin base. Full hairpin bypass often involves template-switching DNA synthesis, subsequent realignment generating multiply mismatched primer termini and extension of these termini by Pol ζ. The postreplicative pathway dependent on polyubiquitylation of proliferating cell nuclear antigen provides a backup mechanism for accurate bypass of these sequences that is primarily used when the Pol ζ/Rev1-dependent pathway is inactive. The results emphasize the pivotal role of noncanonical DNA structures in mutagenesis and reveal the long-sought-after mechanism of complex mutations that represent a unique signature of Pol ζ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号