首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Spinner dolphins (Stenella longirostris) commonly use inshoreisland and atoll habitats for daytime rest and social interactionsand forage over deep waters at night. In Hawaii, they occurthroughout the archipelago. We applied photoidentification mark-recapturetechniques to study the population structure of spinner dolphinsassociated with remote Midway Atoll, far-western Hawaii. AtMidway, spinner dolphins live in stable bisexually bonded societiesof long-term associates, with strong geographic fidelity, noobvious fission-fusion, and limited contacts with other populations.Their large cohesive groups change little over time and arebehaviorally/socially discrete from other spinner dolphin groups.This social pattern differs considerably from the fluid fission-fusionmodel proposed previously for spinner dolphins associated witha large island habitat in the main Hawaiian Archipelago. Thesedifferences correspond to geographic separation and habitatvariation. While in the main islands there are several daytimeresting places available at each island habitat; in far-westernHawaii, areas of suitable habitat are limited and separatedby large stretches of open pelagic waters with potentially highrisk of shark predation. We hypothesize that with deepwaterfood resources in close proximity and other atolls relativelyfar away for easy (day-to-day) access, it is energetically morebeneficial in the remote Hawaiian atolls to remain "at home"than to travel to other atolls, so there is stability insteadof variability; there is no fission-fusion effect. Thus, thegeographic isolation and small size of remote atolls triggera process in which the fluidity of the fission-fusion spinnerdolphin society is replaced with long-term group fidelity andsocial stability.  相似文献   

2.
Social network analysis has been shown to be effective in studying the social structure of cetacean populations. Common bottlenose dolphins (Tursiops truncatus) inhabiting the Indian River Lagoon (IRL), Florida, have among the highest concentrations of total mercury (THg) in blood reported worldwide. The purpose of this study was to examine the relationship between THg concentrations in IRL dolphins and their social affiliations. Whole blood samples from 98 dolphins with photo‐identification sighting histories were collected between 2003–2007 and 2010–2012. Dolphins were categorized into approximate tertiles of low (mean 199.7 μg/L), medium (mean 366.8 μg/L), and high (mean 990.5 μg/L) THg exposure. Social associations between individual dolphins were defined by the proportion of sightings documented with another known individual. Social network measures of individuals and associations between dyads were examined to determine differences among THg categories. Strong social affiliations of individuals within the highest category of THg were found (P = 0.04), suggesting shared exposures among dolphins foraging in specific areas of the estuary. Network measures of strength and affinity were significantly higher in the highest exposure category. This report used social network analysis as a novel way to examine patterns of exposure to an environmental contaminant in a cetacean population.  相似文献   

3.
4.
In animal societies with fission-fusion dynamics, demographic disturbances can influence the social and spatial structure of the population. Within the Indian River Lagoon (IRL), Florida, common bottlenose dolphins (Tursiops truncatus) have experienced recurrent unusual mortality events (UMEs) providing an opportunity to examine postdisturbance population and social cluster restructuring. This study investigates the impact of the potentially nonepizootic 2008 UME on the IRL dolphin population. Photo-identification surveys conducted from August 2006 to May 2010 were stratified into pre- (August 2006–April 2008) and post-UME (September 2008–May 2010) time periods. Social network and spatial (univariate kernel density) analyses were limited to individuals sighted 5+ times per period (pre-UME = 183, post-UME = 134), and indicated a change from 11 to ten social clusters, although individuals did not always reassociate with pre-UME cluster associates. Despite the social and spatial disconnect between IRL proper and Mosquito Lagoon clusters, both network density and core area spatial overlap increased post-UME allowing for increased intercluster interactions. However, intracluster associations increased as well, allowing the population to maintain multiple social clusters within a loosely connected network. This study shows the important role sociality may play in the adaptability of cetaceans to environmental and demographic changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号