首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants are considered an important food and nutrition source for humans. Despite advances in plant seed metabolomics, knowledge about the genetic and molecular bases of rice seed metabolomes at different developmental stages is still limited. Here, using Zhenshan 97 (ZS97) and Minghui 63 (MH63), we performed a widely targeted metabolic profiling in seeds during grain filling, mature seeds and germinating seeds. The diversity between MH63 and ZS97 was characterized in terms of the content of metabolites and the metabolic shifting across developmental stages. Taking advantage of the ultra‐high‐density genetic map of a population of 210 recombinant inbred lines (RILs) derived from a cross between ZS97 and MH63, we identified 4681 putative metabolic quantitative trait loci (mQTLs) in seeds across the three stages. Further analysis of the mQTLs for the codetected metabolites across the three stages revealed that the genetic regulation of metabolite accumulation was closely related to developmental stage. Using in silico analyses, we characterized 35 candidate genes responsible for 30 structurally identified or annotated compounds, among which LOC_Os07g04970 and LOC_Os06g03990 were identified to be responsible for feruloylserotonin and l ‐asparagine content variation across populations, respectively. Metabolite?agronomic trait association and colocation between mQTLs and phenotypic quantitative trait loci (pQTLs) revealed the complexity of the metabolite?agronomic trait relationship and the corresponding genetic basis.  相似文献   

2.
Seed collections in gene banks are useful for the preservation of wild germplasm, providing inexpensive insurance for species that survive in conventional cold storage (–18 °C). Seeds that cannot survive these conditions must be pretreated with cryoprotectants and stored at liquid nitrogen temperatures, which presents unique technical and methodological challenges. Implicit in this approach is the assumption that these added manipulations do not change the genetic diversity of the preserved collections. We used polymorphic microsatellite markers for an endangered aquatic grass, Texas wild rice (Zizania texana), to conduct a preliminary evaluation of the effects of cryogenic preservation of mature embryos on genetic diversity. Using several statistical approaches, we show that allele frequencies did not change in collections of seeds that underwent cryopreservation (cryoprotected) compared to those samples that was not exposed to cryopreservation (control). The retention of the allelic diversity at the five loci examined suggests that there were no significant changes in genetic diversity due to treatments and that these protocols may be appropriate for ex situ conservation of genetically diverse wild germplasm.  相似文献   

3.
粳稻品质性状间及其与植株性状和产量性状间的遗传相关   总被引:4,自引:0,他引:4  
吕文彦  张鉴  邵国军  周鸿飞  曹萍 《遗传》2005,27(4):601-604
利用朱军等提出的种子性状遗传模型,采用 3×3 NCⅡ正反交设计的亲本和部分组合F2代种子,分析了品质性状糙米率、垩白粒率、垩白面积和AC间及上述品质性状与株高、穗部性状等的遗传相关,以期为粳稻育种后代选择提供指导。结果表明,精米重与糙米率存在极显著的母体加性相关;虽然控制品质性状的主要遗传效应分量与植株性状相应遗传效应分量遗传协方差不显著,但在其他相应遗传效应分量方面存在着复杂的关系。  相似文献   

4.
Yu GQ  Bao Y  Shi CH  Dong CQ  Ge S 《Biochemical genetics》2005,43(5-6):261-270
Weedy rice refers to populations of usually annual Oryza species that diminish farmer income through reduction of grain yield and lowered commodity value at harvest. The genetic diversity and population genetic structure of weedy rice in Liaoning Province were studied by RAPD and SSR markers. The results indicate that the level of genetic diversity of Liaoning weedy rice is very low, with polymorphic loci being only 3.70% (RAPDs) and 47.62% (SSRs). On the other hand, high genetic differentiation was found among populations, in particular between two regions (Shenyang and Dandong), with Fst values of 0.746 (RAPDs) and 0.656 (SSRs), suggesting that more than two thirds of the genetic variation resides among regions. Combined with our investigations of cultural traditions, the low level of genetic diversity in Liaoning Province is attributed to its narrow genetic background enhanced by exchanges of cultivar seeds, whereas the high genetic differentiation between the two regions is most likely the result of different founding parents and gene flow from local rice varieties to weedy rice. The rice cultivars in the two regions are all local varieties and are different genetically. A comparison of the two marker systems demonstrates that SSR is more informative and powerful in terms of the assessment of genetic variability, although both RAPD and SSR provide useful genetic information on weedy rice.  相似文献   

5.
Landrace rice in Thailand consists of managed populations grown under traditional and long‐standing agricultural practices. These populations evolve both in response to environmental conditions within the local agro‐ecosystem and in response to human activities. Single landraces are grown across varying environments and recently have experienced temporal changes in local environments due to climate change. Here we assess the interplay between natural selection in a changing climate and human‐mediated selection on the population genetic structure of Muey Nawng, a local landrace of Thai rice. Genetic diversity and population structure of landrace rice were assessed by a STRUCTURE analysis of 20 microsatellite loci. The first exon–intron junction of the waxy gene was sequenced to determine genotypes for glutinous or non‐glutinous grain starch. Muey Nawng rice is genetically variable and is structured based on starch grain types and the level of resistance to gall midge pest. A strong positive correlation was found between genetic diversity and the percentage of gall midge infestation. Variation in the waxy locus is correlated with starch quality; selection for non‐glutinous rice appears to involve additional genes. The dynamics of genetic diversity within Muey Nawng rice depends on three factors: (a) a genetic bottleneck caused by strong selection associated with gall midge infestation, (b) selection by local farmers for starch quality and (c) variation introduced by farmer practices for cultivation and seed exchange. These results, when taken in total, document the ability of landrace rice to quickly evolve in response to both natural and human‐mediated selection.  相似文献   

6.
7.
Emerging evidence supports that cooked rice (Oryza sativa L.) contains metabolites with biomedical activities, yet little is known about the genetic diversity that is responsible for metabolite variation and differences in health traits. Metabolites from ten diverse varieties of cooked rice were detected using ultra performance liquid chromatography coupled to mass spectrometry. A total of 3,097 compounds were detected, of which 25% differed among the ten varieties. Multivariate analyses of the metabolite profiles showed that the chemical diversity among the varieties cluster according to their defined subspecies classifications: indica, japonica, and aus. Metabolite-specific genetic diversity in rice was investigated by analyzing a collection of single nucleotide polymorphisms (SNPs) in genes from biochemical pathways of nutritional importance. Two classes of bioactive compounds, phenolics and vitamin E, contained nonsynonymous SNPs and SNPs in the 5' and 3' untranslated regions for genes in their biosynthesis pathways. Total phenolics and tocopherol concentrations were determined to examine the effect of the genetic diversity among the ten varieties. Per gram of cooked rice, total phenolics ranged from 113.7 to 392.6 μg (gallic acid equivalents), and total tocopherols ranged between 7.2 and 20.9 μg. The variation in the cooked rice metabolome and quantities of bioactive components supports that the SNP-based genetic diversity influenced nutritional components in rice, and that this approach may guide rice improvement strategies for plant and human health.  相似文献   

8.
Barley (Hordeum vulgare L.) is a major cereal grain widely used for livestock feed, brewing malts and human food. Grain yield is the most important breeding target for genetic improvement and largely depends on optimal timing of flowering. Little is known about the allelic diversity of genes that underlie flowering time in domesticated barley, the genetic changes that have occurred during breeding, and their impact on yield and adaptation. Here, we report a comprehensive genomic assessment of a worldwide collection of 895 barley accessions based on the targeted resequencing of phenology genes. A versatile target‐capture method was used to detect genome‐wide polymorphisms in a panel of 174 flowering time‐related genes, chosen based on prior knowledge from barley, rice and Arabidopsis thaliana. Association studies identified novel polymorphisms that accounted for observed phenotypic variation in phenology and grain yield, and explained improvements in adaptation as a result of historical breeding of Australian barley cultivars. We found that 50% of genetic variants associated with grain yield, and 67% of the plant height variation was also associated with phenology. The precise identification of favourable alleles provides a genomic basis to improve barley yield traits and to enhance adaptation for specific production areas.  相似文献   

9.
Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.  相似文献   

10.
Oryza rufipogon Griff. occurs widely in aquatic ecosystem of tropics and subtropics of monsoon Asia as well as Southern China. It is a vital gene source for rice breeding programs. Many populations of the species, unfortunately, have drastically diminished because of the disappearance of aquatic habitats as a result of human disturbance. In order to determine patterns of genetic variation at two stages of the life-cycle in the wild rice species, we investigated allozyme variation of four natural populations in China. Two southern populations have significant asexual reproduction while two other northern marginal populations show a mixed reproduction in China. At 22 allozyme loci, a significantly lower genetic diversity was observed in the ratoons than in the seeds of the two southern populations, whereas a significantly higher genetic diversity was found in the ratoons than in the seeds of the two northern marginal populations. The results suggest that the variation of reproductive system is probably associated with their patterns of genetic variation in the species. Moreover, a significantly higher genetic differentiation among populations found in the ratoons than in the seeds may stem from pollen-mediated gene flow among them. Finally, we propose suggestions for conservation management of the endangered species.  相似文献   

11.
Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.  相似文献   

12.
Seed vigor is an important trait for the direct seeding of rice (Oryza sativa L.). In this study, we examined the genetic architecture of variation in the germination rate using a diverse panel of rice accessions. Four quantitative trait loci for germination rate were identified using a genome-wide association study during early germination. One candidate gene, encoding the 2-oxoglutarate/malate translocator (OsOMT), was validated for qGR11. Disruption of this gene (Osomt mutants) reduced seed vigor, including seed germination and seedling growth, in rice. Functional analysis revealed that OsOMT influences seed vigor mainly by modulating amino acid levels and glycolysis and tricarboxylic acid cycle processes. The levels of most amino acids, including the Glu family (Glu, Pro, Arg, and GABA), Asp family (Asp, Thr, Lys, Ile, and Met), Ser family (Ser, Gly, and Cys), and others (His, Ala, Leu, and Val), were significantly reduced in the mature grains and the early germinating seeds of Osomt mutants compared to wild type (WT). The glucose and soluble sugar contents, as well as adenosine triphosphate levels, were significantly decreased in germinating seeds of Osomt mutants compared to WT. These results provide important insights into the role of OsOMT in seed vigor in rice.  相似文献   

13.
The advent of the pangenome era has unraveled previously unknown genetic variation existing within diverse crop plants, including rice. This untapped genetic variation is believed to account for a major portion of phenotypic variation existing in crop plants. However, the use of conventional single reference-guided genotyping often fails to capture a large portion of this genetic variation leading to a reference bias. This makes it difficult to identify and utilize novel population/cultivar-specific genes for crop improvement. Thus, we developed a Rice Pangenome Genotyping Array (RPGA) harboring probes assaying 80K single-nucleotide polymorphisms (SNPs) and presence–absence variants spanning the entire 3K rice pangenome. This array provides a simple, user-friendly and cost-effective (60–80 USD per sample) solution for rapid pangenome-based genotyping in rice. The genome-wide association study (GWAS) conducted using RPGA-SNP genotyping data of a rice diversity panel detected a total of 42 loci, including previously known as well as novel genomic loci regulating grain size/weight traits in rice. Eight of these identified trait-associated loci (dispensable loci) could not be detected with conventional single reference genome-based GWAS. A WD repeat-containing PROTEIN 12 gene underlying one of such dispensable locus on chromosome 7 (qLWR7) along with other non-dispensable loci were subsequently detected using high-resolution quantitative trait loci mapping confirming authenticity of RPGA-led GWAS. This demonstrates the potential of RPGA-based genotyping to overcome reference bias. The application of RPGA-based genotyping for population structure analysis, hybridity testing, ultra-high-density genetic map construction and chromosome-level genome assembly, and marker-assisted selection was also demonstrated. A web application ( http://www.rpgaweb.com ) was further developed to provide an easy to use platform for the imputation of RPGA-based genotyping data using 3K rice reference panel and subsequent GWAS.  相似文献   

14.
The purpose of this study was to analyze the phenolic profiles of seeds from fifteen Paeonia ostii cultivated populations in China and identify their relationship with antioxidant activities and associated environmental factors. Thirteen individual phenolic compounds were quantitatively determined by HPLC, and (+)‐catechin was the most abundant phenolic compound in the seeds. Correlation analysis showed that phenolics were the most effective antioxidant compound class by evaluating DPPH, ABTS, and hydroxyl radical scavenging activities as well as ferric reducing antioxidant power. Latitude and annual rainfall had significant effects on the contents of many phenolic compounds, and elevation was only significantly correlated with gallic acid content. Within fifteen P. ostii cultivated populations, the seeds of Tongling population exhibited the highest phenolic contents and strongest antioxidant activities. These results suggest that Tongling population has a relatively high utilization value and a potential for sources of natural antioxidants.  相似文献   

15.
Many seeds carry endophytes, which ensure good chances of seedling colonization. In this work, we have studied the seed-borne bacterial flora of rice varieties cultivated in the northeast of Argentina. Surface-sterilized husked seeds of the rice cultivars CT6919, El Paso 144, CAMBA, and IRGA 417 contained an average of 5×106 CFU/g of mesophilic and copiotrophic bacteria. Microbiological, physiological, and molecular characterization of a set of 39 fast-growing isolates from the CT6919 seeds revealed an important diversity of seed-borne mesophiles and potential plant probiotic activities, including diazotrophy and antagonism of fungal pathogens. In fact, the seed-borne bacterial flora protected the rice seedlings against Curvularia sp. infection. The root colonization pattern of 2 Pantoea isolates from the seeds was studied by fluorescence microscopy of the inoculated axenic rice seedlings. Both isolates strongly colonized the site of emergence of the lateral roots and lenticels, which may represent the entry sites for endophytic spreading. These findings suggest that rice plants allow grain colonization by bacterial species that may act as natural biofertilizers and bioprotectives early from seed germination.  相似文献   

16.
17.
Wild rice, Oryza rufipogon, has endangered species conservation status and it is subject to in situ conservation in China. To understand the potential of the seed bank in species conservation and population restoration, this study compared the genetic diversity of O. rufipogon plants with that of its soil seed banks in two marshes. A total of 11 pairs of rice SSR primers were used and 9 were polymorphic. Allele frequencies of the seeds differed significantly from those of surface plants and varied between soil layers. Relatively more alleles and higher genetic diversity (H e) were found in plant populations, relative to seed banks. The numbers of germinable seeds and the level of genetic variation in seed banks decreased with the increasing of soil depth, indicating a rapid seed loss. Genetic differentiation was detected between sites and between plant and seed populations, as well as among seeds of different soil strata. Rapid seed loss, partly dormancy loss, and nonrandom seed mortality are discussed as the possible contributors to the pattern of reduced genetic variation within seed banks, compared to plants. These could also be responsible for the considerable genetic differentiation between populations. The seed population held about 72% of the total genetic variation of O. rufipogon in each marsh, indicating the potential of seed banks for restoring population variabilities if the plant populations were lost.  相似文献   

18.
Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication‐driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion‐and‐deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high‐throughput genotyping. A contiguous long low‐diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication‐related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.  相似文献   

19.

Poor milling and grain appearance is a common feature of locally produced rice (Oryza sativa L.) in West Africa. Development of genotypes with high yield and uniform milled grain size will enhance the market for the locally produced rice. One hundred rice accessions were evaluated to assess genetic variability, heritability and correlations for 11 milling and appearance quality traits and grain yield. The field was laid as a 10?×?10 alpha lattice design with three replications following standard cultivation practices. ANOVA revealed significant differences for the traits studied. The genotypic and environmental variances showed significant differences for all characters studied. Phenotypic coefficient of variation was greater than its corresponding genotypic coefficient of variation for each studied trait. Heritability at broad-sense varied from 14.1% for milling degree to 73.8% for milled grain length-to-width ratio (L/W). Genetic advance as percent of mean ranged from 2.2% for brown rice recovery to 129.6% for percentage of grain with chalkiness (PGWC). In general, genotypic correlations ranged higher than their corresponding phenotypic correlations. Brown rice recovery had significant positive phenotypic and genotypic correlations with milling recovery and head rice recovery. Consequently, brown rice recovery, milling recovery and L/W could be used as selection criteria for the improvement of head rice recovery. Genotypes BETIA and CRI-AMANKWATIA had the desirable PGWC and degree of chalkiness, therefore, they are recommended for the improvement of high yielding varieties with high amount of chalkiness.

  相似文献   

20.
Control of weeds in cultivated crops is a pivotal component in successful crop production allowing higher yield and higher quality. In rice‐growing regions worldwide, weedy rice (Oryza sativa f. spontanea Rosh.) is a weed related to cultivated rice which infests rice fields. With populations across the globe evolving a suite of phenotypic traits characteristic of weeds and of cultivated rice, varying hypotheses exist on the origin of weedy rice. Here, we investigated the genetic diversity and possible origin of weedy rice in California using 98 simple sequence repeat (SSR) markers and an Rc gene‐specific marker. By employing phylogenetic clustering analysis, we show that four to five genetically distinct biotypes of weedy rice exist in California. Analysis of population structure and genetic distance among individuals reveals diverse evolutionary origins of California weedy rice biotypes, with ancestry derived from indica, aus, and japonica cultivated rice as well as possible contributions from weedy rice from the southern United States and wild rice. Because this diverse parentage primarily consists of weedy, wild, and cultivated rice not found in California, most existing weedy rice biotypes likely originated outside California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号