首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
How cells drive the phospholipid signal response to heat stress (HS) to maintain cellular homeostasis is a fundamental issue in biology, but the regulatory mechanism of this fundamental process is unclear. Previous quantitative analyses of lipids showed that phosphatidylinositol (PI) accumulates after HS in Ganoderma lucidum, implying the inositol phospholipid signal may be associated with HS signal transduction. Here, we found that the PI‐4‐kinase and PI‐4‐phosphate‐5‐kinase activities are activated and that their lipid products PI‐4‐phosphate and PI‐4,5‐bisphosphate are increased under HS. Further experimental results showed that the cytosolic Ca2+ ([Ca2+]c) and ganoderic acid (GA) contents induced by HS were decreased when cells were pretreated with Li+, an inhibitor of inositol monophosphatase, and this decrease could be rescued by PI and PI‐4‐phosphate. Furthermore, inhibition of PI‐4‐kinases resulted in a decrease in the Ca2+ and GA contents under HS that could be rescued by PI‐4‐phosphate but not PI. However, the decrease in the Ca2+ and GA contents by silencing of PI‐4‐phosphate‐5‐kinase could not be rescued by PI‐4‐phosphate. Taken together, our study reveals the essential role of the step converting PI to PI‐4‐phosphate and then to PI‐4,5‐bisphosphate in [Ca2+]c signalling and GA biosynthesis under HS.  相似文献   

17.
为研究草酸在核盘菌致病过程中可能的作用,以模式植物拟南芥为材料,采用30mmol/L草酸喷施3周龄拟南芥,发现草酸显著诱导拟南芥AtWRKY63的表达。通过构建AtWRKY63过表达载体转化拟南芥,获得过表达AtWRKY63的纯系转基因植株,再用核盘菌活体接种拟南芥,结果表明过表达AtWRKY63植株对核盘菌的抗性显著增强。组织化学染色结果表明,AtWRKY63是通过诱导植物的氧爆发,抑制核盘菌菌丝的生长来抵御核盘菌的侵染;qRT-PCR对拟南芥转录水平分析表明,AtWRKY63可能激活了过表达植株的水杨酸与茉莉酸依赖的抗病信号途径,从而增强对核盘菌的抗性。  相似文献   

18.
19.
20.
Laboratory experiments were conducted to test interactive effects of calcium (Ca2+) content and the presence of humic substance (HS) on malachite green (MAG)‐induced toxicity in fish embryos and larvae by means of a semistatic 144‐h‐embryo‐larval‐test with zebrafish (Danio rerio). Two kinds of reconstituted water samples were used to produce the test media by mixing salts into deionized water resulting in either hard water (↑Ca ? HS), or soft water (↓Ca ? HS). By adding HS two additional test media were produced (↑Ca + HS, ↓Ca + HS). MAG was tested in concentrations of 0.05, 0.10, 0.15, 0.20, 0.25 mg L?1. The toxicity ranking of MAG (mg L?1) to embryos based on 96‐h‐LC50 in the different test water samples is: ↑Ca ? HS (0.061) > ↑Ca + HS (0.123) = ↓Ca ? HS (0.12) ≥ ↓Ca + HS (0.134) and on 144‐h‐LC50 to larvae is: ↑Ca ? HS (0.038) > ↑Ca + HS (0.06) > ↓Ca ? HS (0.077) = ↓Ca + HS (0.077). Mortality of all the groups was significantly different (P < 0.05). Increased Ca2+ concentrations did not protect zebrafish embryos and larvae from MAG‐induced toxicity. At high Ca2+ conditions, the mortality of the embryos as well as of the larvae is reduced in the ↑Ca + HS group relative to the ↑Ca ? HS group. Thus, at high Ca2+ conditions the HS does affect the MAG‐induced mortality. The mechanism which causes the higher toxicity of MAG in the presence of higher Ca2+ concentrations is poorly understood. A probable explanation could be the stimulation of the calcium‐binding protein calmodulin as well as the calmodulin kinase II in cell membranes in the presence of high Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号