首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parkinsons disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra leading to the major clinical and pharmacological abnormalities of PD. In order to establish causal or protective treatments for PD, it is necessary to identify the cascade of deleterious events that lead to the dysfunction and death of dopaminergic neurons. Based on genetic, neuropathological, and biochemical data in patients and experimental animal models, dysfunction of the ubiquitin-proteasome pathway, protein aggregation, mitochondrial dysfunction, oxidative stress, activation of the c-Jun N-terminal kinase pathway, and inflammation have all been identified as important pathways leading to excitotoxic and apoptotic death of dopaminergic neurons. Toxin-based and genetically engineered animal models allow (1) the study of the significance of these aspects and their interaction with each other and (2) the development of causal treatments to stop disease progression.  相似文献   

2.
3.
Huntington and Parkinson diseases (HD and PD) are two major neurodegenerative disorders pathologically characterized by the accumulation of the aggregate-prone proteins mutant huntingtin (in HD) and α-synuclein (in PD). Mutant huntingtin is an autophagy substrate and autophagy modulators affect HD pathology both in vitro and in vivo. In vitro, α-synuclein levels are able to modulate autophagy: α-synuclein overexpression inhibits autophagy, whereas downregulation promotes autophagy. Here, we review our recent studies showing that α-synuclein levels modulate mutant huntingtin toxicity in mouse models. This phenotypic modification is accompanied by the in vivo modulation of autophagosome numbers in mouse brains from both control and HD mice expressing different levels of α-synuclein.  相似文献   

4.
α-Synuclein (α-syn) is the most abundant protein found in Lewy bodies, a hallmark of Parkinson's disease (PD), and can aggregate to form toxic oligomers and fibrillar structures. Recent studies have shown that α-syn can be transmitted between neurons and can seed the formation of toxic aggregates in recipient neurons in a prion-like manner. In addition, it is known that Lewy body pathology may spread gradually and systematically from the peripheral or enteric nervous system or olfactory bulb to specific brain regions during progression of idiopathic PD. It is therefore conceivable that α-syn species could act as seeds that drive PD progression. Here, we review recent advances from studies of α-syn cell-to-cell transfer, the current understanding of α-syn toxicity, and how these relate to progression of PD pathology.  相似文献   

5.
Environmental toxins and α-synuclein in Parkinson’s disease   总被引:3,自引:0,他引:3  
Liu Y  Yang H 《Molecular neurobiology》2005,31(1-3):273-282
In recent years, environmental influences have been thought to play an important role in Parkinson’s disease (PD). Evidence from epidemiological investigations suggests that environmental factors might take part in the disease process. Intriguingly, most of environmental toxins share the common mechanism of causing mitochondria dysfunction by inhibiting complex I and promoting α-synuclein aggregation, a key factor in PD. Therefore, understanding the mechanism of interactions between α-synuclein and environmental factors could lead to new therapeutic approaches to PD.  相似文献   

6.
The triple-transgenic Alzheimer (3 × Tg-AD) mouse expresses mutant PS1M146V, APPswe, and tauP301L transgenes and progressively develops plaques and neurofibrillary tangles with a temporal- and region-specific profile that resembles the neuropathological progression of Alzheimer''s disease (AD). In this study, we used proteomic approaches such as two-dimensional gel electrophoresis and mass spectrometry to investigate the alterations in protein expression occurring in the brain and cerebellum of 3 × Tg-AD and presenilin-1 (PS1) knock-in mice (animals that do not develop Aβ- or tau-dependent pathology nor cognitive decline and were used as control). Finally, using the Ingenuity Pathway Analysis we evaluated novel networks and molecular pathways involved in this AD model. We identified several differentially expressed spots and analysis of 3 × Tg-AD brains showed a significant downregulation of synaptic proteins that are involved in neurotransmitter synthesis, storage and release, as well as a set of proteins that are associated with cytoskeleton assembly and energy metabolism. Interestingly, in the cerebellum, a structure not affected by AD, we found an upregulation of proteins involved in carbohydrate metabolism and protein catabolism. Our findings help to unravel the pathogenic brain mechanisms set in motion by mutant amyloid precursor protein (APP) and hyperphosphorylated tau. These data also reveal cerebellar pathways that may be important to counteract the pathogenic actions of Aβ and tau, and ultimately offer novel targets for therapeutic intervention.  相似文献   

7.
Parkinson’s disease (PD), one of the most common human neurodegenerative disorders, is characterized by the loss of dopaminergic neurons in the substantia nigra of the midbrain. Our recent case-control association study of 268 SNPs in 121 candidate genes identified α-synuclein (SNCA) as a susceptibility gene for sporadic PD (P = 1.7 × 10−11). We also replicated the association of fibroblast growth factor 20 (FGF20) with PD (P = 0.0089). To find other susceptibility genes, we added 34 SNPs to the previous screen. Of 302 SNPs in a total 137 genes, but excluding SNCA, SNPs in NDUFV2, FGF2, CALB1 and B2M showed significant association (P < 0.01; 882 cases and 938 control subjects). We replicated the association analysis for these SNPs in a second independent sample set (521 cases and 1,003 control subjects). One SNP, rs1805874 in calbindin 1 (CALB1), showed significance in both analyses (P = 7.1 × 10−5; recessive model). When the analysis was stratified relative to the SNCA genotype, the odds ratio of CALB1 tended to increase according to the number of protective alleles in SNCA. In contrast, FGF20 was significant only in the subgroup of SNCA homozygote of risk allele. CALB1 is a calcium-binding protein that widely is expressed in neurons. A relative sparing of CALB1-positive dopaminergic neurons is observed in PD brains, compared with CALB1-negative neurons. Our genetic analysis suggests that CALB1 is associated with PD independently of SNCA, and that FGF20 is associated with PD synergistically with SNCA. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The objective of the present study was to investigate brain activity abnormalities in the early stage of Parkinson’s disease (PD). To achieve this goal, eyes-closed resting state electroencephalography (EEG) signals were recorded from 15 early-stage PD patients and 15 age-matched healthy controls. The AR Burg method and the wavelet packet entropy (WPE) method were used to characterize EEG signals in different frequency bands between the groups, respectively. In the case of the AR Burg method, an increase of relative powers in the δ- and θ-band, and a decrease of relative powers in the α- and β-band were observed for patients compared with controls. For the WPE method, EEG signals from patients showed significant higher entropy over the global frequency domain. Furthermore, WPE in the γ-band of patients was higher than that of controls, while WPE in the δ-, θ-, α- and β-band were all lower. All of these changes in EEG dynamics may represent early signs of cortical dysfunction, which have potential use as biomarkers of PD in the early stage. Our findings may be further used for early intervention and early diagnosis of PD.  相似文献   

9.
The presence of α-synuclein aggregates in the characteristic Lewy body pathology seen in idiopathic Parkinson''s disease (PD), together with α-synuclein gene mutations in familial PD, places α-synuclein at the center of PD pathogenesis. Decreased levels of the chaperone-mediated autophagy (CMA) proteins LAMP-2A and hsc70 in PD brain samples suggests compromised α-synuclein degradation by CMA may underpin the Lewy body pathology. Decreased CMA protein levels were not secondary to the various pathological changes associated with PD, including mitochondrial respiratory chain dysfunction, increased oxidative stress and proteasomal inhibition. However, decreased hsc70 and LAMP-2A protein levels in PD brains were associated with decreases in their respective mRNA levels. MicroRNA (miRNA) deregulation has been reported in PD brains and we have identified eight miRNAs predicted to regulate LAMP-2A or hsc70 expression that were reported to be increased in PD. Using a luciferase reporter assay in SH-SY5Y cells, four and three of these miRNAs significantly decreased luciferase activity expressed upstream of the lamp-2a and hsc70 3′UTR sequences respectively. We confirmed that transfection of these miRNAs also decreased endogenous LAMP-2A and hsc70 protein levels respectively and resulted in significant α-synuclein accumulation. The analysis of PD brains confirmed that six and two of these miRNAs were significantly increased in substantia nigra compacta and amygdala respectively. These data support the hypothesis that decreased CMA caused by miRNA-induced downregulation of CMA proteins plays an important role in the α-synuclein pathology associated with PD, and opens up a new avenue to investigate PD pathogenesis.  相似文献   

10.
11.
Parkinsons disease (PD) is a frequent neurological disorder of the basal ganglia, which is characterized by the progressive loss of dopaminergic neurons mainly in the substantia nigra pars compacta (SNpc). Inflammatory processes have been shown to be associated with the pathogenesis of PD. Activated microglia, as well as to a lesser extent reactive astrocytes, are found in the area associated with cell loss, possibly contributing to the inflammatory process by the release of pro-inflammatory prostaglandins or cytokines. Further deleterious factors released by activated microglia or astrocytes are reactive oxygen species. On the other hand, they may mediate neuroprotective properties by the release of trophic factors or the uptake of glutamate. In this review, we will discuss the different aspects of activated glial cells and potential mechanisms that mediate or protect against cell loss in PD.  相似文献   

12.
We investigated by a computational model of the basal ganglia the different network effects of deep brain stimulation (DBS) for Parkinson’s disease (PD) in different target sites in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi), and the globus pallidus pars externa (GPe). A cellular-based model of the basal ganglia system (BGS), based on the model proposed by Rubin and Terman (J Comput Neurosci 16:211–235, 2004), was developed. The original Rubin and Terman model was able to reproduce both the physiological and pathological activities of STN, GPi, GPe and thalamo-cortical (TC) relay cells. In the present study, we introduced a representation of the direct pathway of the BGS, allowing a more complete framework to simulate DBS and to interpret its network effects in the BGS. Our results suggest that DBS in the STN could functionally restore the TC relay activity, while DBS in the GPe and in the GPi could functionally over-activate and inhibit it, respectively. Our results are consistent with the experimental and the clinical evidences on the network effects of DBS.  相似文献   

13.
《Biomarkers》2013,18(5):434-444
Damage to DNA by dopamine quinone and/or catechol estrogen quinones may play a significant role in the initiation of Parkinson’s disease (PD). Depurinating estrogen–DNA adducts are shed from cells and excreted in urine. The aim of this study was to discover whether higher levels of estrogen–DNA adducts are associated with PD. Forty estrogen metabolites, conjugates, and DNA adducts were analyzed in urine samples from 20 PD cases and 40 matched controls by using ultra performance liquid chromatography/tandem mass spectrometry. The levels of adducts in cases versus controls (P?<?0.005) suggest that unbalanced estrogen metabolism could play a causal role in the initiation of PD.  相似文献   

14.
Parkinson’s disease is a complex disorder that is characterized by progressive degeneration of nigrostriatal dopaminergic neurons. Its development is determined by the interaction between the genetic constitution of a body and environmental factors. Analysis of the genes associated with monogenic forms of Parkinson’s disease implicated proteasomal degradation, differentiation of dopaminergic neurons, mitochondrial dysfunction, and oxidative damage in its pathogenesis. The review considers ample data that suggest a key role for mitochondrial dysfunction and oxidative stress.  相似文献   

15.
Hyperphosphorylated tau proteins are one of the neuropathological hallmarks in the Alzheimer’s disease (AD) brain. The in vivo imaging of tau aggregates with nuclear medical imaging probes is helpful for the further comprehension of and medical intervention in the AD pathology. For tau-selective PET imaging, we newly designed and synthesized 18F-labeled benzimidazopyridine (BIP) derivatives with fluoroalkylamino groups, [18F]IBIPF1 and [18F]IBIPF2, and evaluated their utilities as tau imaging probes. They both bound selectively to tau against amyloid β (Aβ) aggregates in AD brain sections in vitro, and showed good pharmacokinetics in mouse brains in vivo. Notably, [18F]IBIPF1 exhibited high tau-selectivity (Tau/Aβ ratio = 34.8), high brain uptake (6.22% ID/g at 2 min postinjection), and subsequent washout (2.77% ID/g at 30 min postinjection). In vivo analysis of radiometabolites indicated that [18F]IBIPF1 was stable against metabolism in the mouse brain. These encouraging preclinical results suggest that further structural optimization based on the BIP scaffold may lead to the development of more useful tau imaging probes.  相似文献   

16.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is now widely used to alleviate symptoms of Parkinson’s disease (PD). The specific aim of this study was to identify posture control measures that may be used to improve selection of DBS parameters in the clinic and this was carried out by changing the DBS stimulation amplitude. A dynamic posture shift paradigm was used to assess posture control in 4 PD STN-DBS subjects. Each subject was tested at 4 stimulation amplitude settings. Movements of the center of pressure and the position of the pelvis were monitored and several quantitative indices were calculated. The presence of any statistically significant changes in several normalized indices due to reduced/no stimulation was tested using the one-sample t test. The peak velocity and the average movement velocity during the initial and mid phases of movement towards the target posture were substantially reduced. These results may be explained in terms of increased akinesia and bradykinesia due to altered stimulation conditions. Thus, the dynamic posture shift paradigm may be an effective tool to quantitatively characterize the effects of DBS on posture control and should be further investigated as a tool for selection of DBS parameters in the clinic.  相似文献   

17.
18.
19.
Science China Life Sciences - The presence of intraneuronal Lewy bodies (LBs) and Lewy neurites (LNs) in the substantia nigra (SN) composed of aggregated α-synuclein (α-syn) has been...  相似文献   

20.
Inflammation is a key pathological hallmark of Alzheimer's disease (AD), although its impact on disease progression and neurodegeneration remains an area of active investigation. Among numerous inflammatory cytokines associated with AD, IL-1β in particular has been implicated in playing a pathogenic role. In this study, we sought to investigate whether inhibition of IL-1β signaling provides disease-modifying benefits in an AD mouse model and, if so, by what molecular mechanisms. We report that chronic dosing of 3xTg-AD mice with an IL-1R blocking Ab significantly alters brain inflammatory responses, alleviates cognitive deficits, markedly attenuates tau pathology, and partly reduces certain fibrillar and oligomeric forms of amyloid-β. Alterations in inflammatory responses correspond to reduced NF-κB activity. Furthermore, inhibition of IL-1 signaling reduces the activity of several tau kinases in the brain, including cdk5/p25, GSK-3β, and p38-MAPK, and also reduces phosphorylated tau levels. We also detected a reduction in the astrocyte-derived cytokine, S100B, and in the extent of neuronal Wnt/β-catenin signaling in 3xTg-AD brains, and provided in vitro evidence that these changes may, in part, provide a mechanistic link between IL-1 signaling and GSK-3β activation. Taken together, our results suggest that the IL-1 signaling cascade may be involved in one of the key disease mechanisms for AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号