首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review discusses the various regulatory charac-teristics of microRNAs that are capable of generating widespread changes in gene expression via post translational repression of many mRNA targets and control self-renewal, differentiation and division of cells. It controls the stem cell functions by controlling a wide range of pathological and physiological processes, including development, differentiation, cellular proliferation, programmed cell death, oncogenesis and metastasis. Through either mRNA cleavage or translational repression, miRNAs alter the expression of their cognate target genes; thereby modulating cellular pathways that affect the normal functions of stem cells, turning them into cancer stem cells, a likely cause of relapse in cancer patients. This present review further emphasizes the recent discoveries on the functional analysis of miRNAs in cancer metastasis and implications on miRNA based therapy using miRNA replacement or anti-miRNA technologies in specific cancer stem cells that are required to establish their efficacy in controlling tumorigenic potential and safe therapeutics.  相似文献   

2.
Cancer stem cells (CSCs) are tumor cells with initiating ability, self-renewal potential, and intrinsic resistance to conventional therapeutics. Efficient isolation and characterization of CSCs pave the way for more comprehensive knowledge about tumorigenesis, heterogeneity, and chemoresistance. Also a better understanding of CSCs will lead to novel era of both basic and clinical cancer research, reclassification of human tumors, and development of innovative therapeutic strategies. Finding novel diagnostic and effective therapeutic strategies also enhance the success of treatment in cancer patients. There are various methods based on the characteristics of the CSCs to detect and isolate these cells, some of which have recently developed. This review summarized current techniques for effective isolation and characterization of CSCs with a focus on advantages and limitations of each method with clinical applications.  相似文献   

3.
The activity of pyruvate dehydrogenase phosphate (PDHb) phosphatase in rat brain mitochondria and homogenate was determined by measuring the rate of activation of purified, phosphorylated (i.e., inactive) pyruvate dehydrogenase complex (PDHC), which had been purified from bovine kidney and inactivated by phosphorylation with Mg . ATP. The PDHb phosphatase activity in purified mitochondria showed saturable kinetics with respect to its substrate, the phospho-PDHC. It had a pH optimum between 7.0 and 7.4, depended on Mg and Ca, and was inhibited by NaF and K-phosphate. These properties are consistent with those of the highly purified enzyme from beef heart. On subcellular fractionation, PDHb phosphatase copurified with mitochondrial marker enzymes (fumarase and PDHC) and separated from a cytosolic marker enzyme (lactate dehydrogenase) and a membrane marker enzyme (acetylcholinesterase), suggesting that it, like its substrate, is located in mitochondria. PDHb phosphatase had similar kinetic properties in purified mitochondria and in homogenate: dependence on Mg and Ca, independence of dichloroacetate, and inhibition by NaF and K-phosphate. These results are consistent with there being only one type of PDHb phosphatase in rat brain preparations. They support the validity of the measurements of the activity of this enzyme in brain homogenates.  相似文献   

4.
5.
6.
Individual recombinant components of pyruvate and 2-oxoglutarate dehydrogenase multienzyme complexes (PDHc, OGDHc) of human and Escherichia coli (E. coli) origin were expressed and purified from E. coli with optimized protocols. The four multienzyme complexes were each reconstituted under optimal conditions at different stoichiometric ratios. Binding stoichiometries for the highest catalytic efficiency were determined from the rate of NADH generation by the complexes at physiological pH. Since some of these complexes were shown to possess ‘moonlighting’ activities under pathological conditions often accompanied by acidosis, activities were also determined at pH 6.3. As reactive oxygen species (ROS) generation by the E3 component of hOGDHc is a pathologically relevant feature, superoxide generation by the complexes with optimal stoichiometry was measured by the acetylated cytochrome c reduction method in both the forward and the reverse catalytic directions. Various known affectors of physiological activity and ROS production, including Ca2+, ADP, lipoylation status or pH, were investigated. The human complexes were also reconstituted with the most prevalent human pathological mutant of the E3 component, G194C and characterized; isolated human E3 with the G194C substitution was previously reported to have an enhanced ROS generating capacity. It is demonstrated that: i. PDHc, similarly to OGDHc, is able to generate ROS and this feature is displayed by both the E. coli and human complexes, ii. Reconstituted hPDHc generates ROS at a significantly higher rate as compared to hOGDHc in both the forward and the reverse reactions when ROS generation is calculated for unit mass of their common E3 component, iii. The E1 component or E1-E2 subcomplex generates significant amount of ROS only in hOGDHc; iv. Incorporation of the G194C variant of hE3, the result of a disease-causing mutation, into reconstituted hOGDHc and hPDHc indeed leads to a decreased activity of both complexes and higher ROS generation by only hOGDHc and only in its reverse reaction.  相似文献   

7.
Pyruvate dehydrogenase kinase (PDK) can regulate the catalytic activity of pyruvate decarboxylation oxidation via the mitochondrial pyruvate dehydrogenase complex, and it further links glycolysis with the tricarboxylic acid cycle and ATP generation. This review seeks to elucidate the regulation of PDK activity in different species, mainly mammals, and the role of PDK inhibitors in preventing increased blood glucose, reducing injury caused by myocardial ischemia, and inducing apoptosis of tumor cells. Regulations of PDKs expression or activity represent a very promising approach for treatment of metabolic diseases including diabetes, heart failure, and cancer. The future research and development could be more focused on the biochemical understanding of the diseases, which would help understand the cellular energy metabolism and its regulation by pharmacological effectors of PDKs.  相似文献   

8.
Blue seed-coats of Ophiopogon jaburan have been found to contain kaempferol, kaempferol 3-glucoside (astragalin), two new glucosides of kaempferol, and a trace amount of an unknown flavonol-like compound. One of the new glucosides was determined to be kaempferol 4′-glucoside and the other to be kaempferol 3, 4′-diglucoside by means of paper-chro-matographic and spectral analyses.  相似文献   

9.
10.
11.
Glioma stem cells (GSCs) contribute to therapy resistance and poor outcomes for glioma patients. A significant feature of GSCs is their ability to grow in an acidic microenvironment. However, the mechanism underlying the rewiring of their metabolism in low pH remains elusive. Here, using metabolomics and metabolic flux approaches, we cultured GSCs at pH 6.8 and pH 7.4 and found that cells cultured in low pH exhibited increased de novo purine nucleotide biosynthesis activity. The overexpression of glucose-6-phosphate dehydrogenase, encoded by G6PD or H6PD, supports the metabolic dependency of GSCs on nucleotides when cultured under acidic conditions, by enhancing the pentose phosphate pathway (PPP). The high level of reduced glutathione (GSH) under acidic conditions also causes demand for the PPP to provide NADPH. Taken together, upregulation of G6PD/H6PD in the PPP plays an important role in acidic-driven purine metabolic reprogramming and confers a predilection toward glioma progression. Our findings indicate that targeting G6PD/H6PD, which are closely related to glioma patient survival, may serve as a promising therapeutic target for improved glioblastoma therapeutics. An integrated metabolomics and metabolic flux analysis, as well as considering microenvironment and cancer stem cells, provide a precise insight into understanding cancer metabolic reprogramming.  相似文献   

12.
The cell of origin of cancer as well as cancer stem cells is still a mystery. In a recent issue of JCMM, Wang et al. challenged the conventional somatic genetic mutation model of multi‐stage carcinogenesis of breast cancer and proposed that ‘Invasive cancers are not necessary from preformed in situ tumours—an alternative way of carcinogenesis from misplaced stem cells’. If this stem cell misplacement theory could withstand future experimental evaluation, it may provide a paradigm shift in the prevention and management of cancer in the clinic.  相似文献   

13.
The cancer stem cell (CSC) theory has been proposed to explain the tumor heterogeneity and carcinogenesis process. Recent studies indicate that aldehyde dehydrogenase (ALDH) activity represents a promising CSC marker. Here, we aimed to determine whether human adenoid cystic carcinoma (AdCC) also follows CSC model by exploring the CSC properties of AdCC cells expressing high level of ALDH activity. Utilizing in-vivo series transplantation assays, we found ALDHhigh AdCC cells were capable of self-renewal and of generating tumors that recapitulate the heterogeneity of the parental tumor. Utilizing in-vitro assay, we found only ALDHhigh AdCC cells have tumorsphere-forming ability in anchorage-independent cultures. Finally, we showed ALDHhigh AdCC cells possess highly invasive capability and are responsible for mediating metastasis. These findings suggest the existence of a developmental hierarchy within human AdCC and further elucidation of the unique survival mechanism of AdCC derived CSC population may provide novel therapeutic strategies to treat AdCC.  相似文献   

14.
The statins (3‐hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors) were proven to be effective antilipid agents against cardiovascular disease. Recent reports demonstrate an anticancer effect induced by the statins through inhibition of cell proliferation, induction of apoptosis, or inhibition of angiogenesis. These effects are due to suppression of the mevalonate pathway leading to depletion of various downstream products that play an essential role in cell cycle progression, cell signaling, and membrane integrity. Recent evidence suggests a shared genomic fingerprint between embryonic stem cells, cancer cells, and cancer stem cells. Activation targets of NANOG, OCT4, SOX2, and c‐MYC are more frequently overexpressed in certain tumors. In the absence of bona fide cancer stem cell lines, human embryonic stem cells, which have similar properties to cancer and cancer stem cells, have been an excellent model throwing light on the anticancer affects of various putative anticancer agents. It was shown that key cellular functions in karyotypically abnormal colorectal and ovarian cancer cells and human embryonic stem cells are inhibited by the statins and this is mediated via a suppression of this stemness pathway. The strategy for treatment of cancers may thus be the targeting of a putative cancer stem cell within the tumor with specific agents such as the statins with or without chemotherapy. The statins may thus play a dual prophylactic role as a lipid‐lowering drug for the prevention of heart disease and as an anticancer agent to prevent certain cancers. This review examines the relationship between the statins, stem cells, and certain cancers. J. Cell. Biochem. 106: 975–983, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
16.
Chromatin, epigenetics and stem cells   总被引:4,自引:0,他引:4  
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control.  相似文献   

17.
Aldehyde dehydrogenase 1 (ALDH1) has been considered to be a marker for cancer stem cells. However, the role of ALDH1 in head and neck squamous cell carcinoma (HNSCC) has yet to be determined. In this study, we isolated ALDH1-positive cells from HNSCC patients and showed that these HNSCC-ALDH1+ cells displayed radioresistance and represented a reservoir for generating tumors. Based on microarray findings, the results of Western blotting and immunofluorescent assays further confirmed that ALDH1+-lineage cells showed evidence of having epithelial-mesenchymal transition (EMT) shifting and endogenously co-expressed Snail. Furthermore, the knockdown of Snail expression significantly decreased the expression of ALDH1, inhibited cancer stem-like properties, and blocked the tumorigenic abilities of CD44+CD24ALDH1+ cells. Finally, in a xenotransplanted tumorigenicity study, we confirmed that the treatment effect of chemoradiotherapy for ALDH1+ could be improved by Snail siRNA. In summary, it is likely that ALDH1 is a specific marker for the cancer stem-like cells of HNSCC.  相似文献   

18.
Overexpression of pyruvate dehydrogenase kinases (PDKs), especially PDK1 has been observed in a variety of cancers. Thus, targeting PDK1 offers an attractive opportunity for the development of cancer therapies. In this letter, we reported the identification of two novel PDK1 inhibitors as anti-osteosarcoma agents. We found that TM-1 and TM-2 inhibited PDK1 with the IC50 values of 2.97 and 3.41?μM, respectively. Furthermore, TM-1 and TM-2 dose-dependently reduced phosphorylation of pyruvate dehydrogenase complex in MG-63 osteosarcoma cells. Finally, TM-1 and TM-2 were found to inhibit the proliferation of MG-63 cells with the EC50 values of 14.5, and 11.0?μM, respectively, meaning TM-1 and TM-2 could be promising leads for the discovery of potent PDK1 inhibitors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号