首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biotrophic invasive hyphae (IH) of the blast fungus Magnaporthe oryzae secrete effectors to alter host defenses and cellular processes as they successively invade living rice (Oryza sativa) cells. However, few blast effectors have been identified. Indeed, understanding fungal and rice genes contributing to biotrophic invasion has been difficult because so few plant cells have encountered IH at the earliest infection stages. We developed a robust procedure for isolating infected-rice sheath RNAs in which ∼20% of the RNA originated from IH in first-invaded cells. We analyzed these IH RNAs relative to control mycelial RNAs using M. oryzae oligoarrays. With a 10-fold differential expression threshold, we identified known effector PWL2 and 58 candidate effectors. Four of these candidates were confirmed to be fungal biotrophy-associated secreted (BAS) proteins. Fluorescently labeled BAS proteins were secreted into rice cells in distinct patterns in compatible, but not in incompatible, interactions. BAS1 and BAS2 proteins preferentially accumulated in biotrophic interfacial complexes along with known avirulence effectors, BAS3 showed additional localization near cell wall crossing points, and BAS4 uniformly outlined growing IH. Analysis of the same infected-tissue RNAs with rice oligoarrays identified putative effector-induced rice susceptibility genes, which are highly enriched for sensor-transduction components rather than typically identified defense response genes.  相似文献   

2.
Knowledge remains limited about how fungal pathogens that colonize living plant cells translocate effector proteins inside host cells to regulate cellular processes and neutralize defense responses. To cause the globally important rice blast disease, specialized invasive hyphae (IH) invade successive living rice (Oryza sativa) cells while enclosed in host-derived extrainvasive hyphal membrane. Using live-cell imaging, we identified a highly localized structure, the biotrophic interfacial complex (BIC), which accumulates fluorescently labeled effectors secreted by IH. In each newly entered rice cell, effectors were first secreted into BICs at the tips of the initially filamentous hyphae in the cell. These tip BICs were left behind beside the first-differentiated bulbous IH cells as the fungus continued to colonize the host cell. Fluorescence recovery after photobleaching experiments showed that the effector protein PWL2 (for prevents pathogenicity toward weeping lovegrass [Eragrostis curvula]) continued to accumulate in BICs after IH were growing elsewhere. PWL2 and BAS1 (for biotrophy-associated secreted protein 1), BIC-localized secreted proteins, were translocated into the rice cytoplasm. By contrast, BAS4, which uniformly outlines the IH, was not translocated into the host cytoplasm. Fluorescent PWL2 and BAS1 proteins that reached the rice cytoplasm moved into uninvaded neighbors, presumably preparing host cells before invasion. We report robust assays for elucidating the molecular mechanisms that underpin effector secretion into BICs, translocation to the rice cytoplasm, and cell-to-cell movement in rice.  相似文献   

3.
4.
Phytopathogenic microorganisms, including the fungal pathogen Magnaporthe oryzae, secrete a myriad of effector proteins to facilitate infection. Utilizing the transient expression of candidate effectors in the leaves of the model plant Nicotiana benthamiana, we identified 11 suppressors of plant cell death (SPD) effectors from M. oryzae that were able to block the host cell death reaction induced by Nep1. Ten of these 11 were also able to suppress BAX‐mediated plant cell death. Five of the 11 SPD genes have been identified previously as either essential for the pathogenicity of M. oryzae, secreted into the plant during disease development, or as suppressors or homologues of other characterized suppressors. In addition, of the remaining six, we showed that SPD8 (previously identified as BAS162) was localized to the rice cytoplasm in invaded and surrounding uninvaded cells during biotrophic invasion. Sequence analysis of the 11 SPD genes across 43 re‐sequenced M. oryzae genomes revealed that SPD2, SPD4 and SPD7 have nucleotide polymorphisms amongst the isolates. SPD4 exhibited the highest level of nucleotide diversity of any currently known effector from M. oryzae in addition to the presence/absence polymorphisms, suggesting that this gene is potentially undergoing selection to avoid recognition by the host. Taken together, we have identified a series of effectors, some of which were previously unknown or whose function was unknown, that probably act at different stages of the infection process and contribute to the virulence of M. oryzae.  相似文献   

5.
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens.  相似文献   

6.
Crop destruction by the hemibiotrophic rice pathogen Magnaporthe oryzae requires plant defence suppression to facilitate extensive biotrophic growth in host cells before the onset of necrosis. How this is achieved at the genetic level is not well understood. Here, we report that a M. oryzae sirtuin, MoSir2, plays an essential role in rice defence suppression and colonization by controlling superoxide dismutase (SOD) gene expression. Loss of MoSir2 function in Δsir2 strains did not affect appressorial function, but biotrophic growth in rice cells was attenuated. Compared to wild type, Δsir2 strains failed to neutralize plant‐derived reactive oxygen species (ROS) and elicited robust defence responses in rice epidermal cells that included elevated pathogenesis‐related gene expression and granular depositions. Deletion of a SOD‐encoding gene under MoSir2 control generated Δsod1 deletion strains that mimicked Δsir2 for impaired rice defence suppression, confirming SOD activity as a downstream output of MoSir2. In addition, comparative protein acetylation studies and forward genetic analyses identified a JmjC domain‐containing protein as a likely target of MoSir2, and a Δsir2 Δjmjc double mutant was restored for MoSOD1 expression and defence suppression in rice epidermal cells. Together, this work reveals MoSir2 and MoJmjC as novel regulators of early rice cell infection.  相似文献   

7.
8.
We analyzed the response of rice to Magnaporthe oryzae infection using two mutant strains deficient in Mgb1 and Mst12, which are essential for the development of appresoria and penetration pegs. Both mutants induced the much lower levels of accumulation of phytoalexins than wild-type, suggesting that the massive production of phytoalexins requires the fungal invasion of rice cells. Intense accumulation of H2O2 in a single whole cell also required fungal penetration. Microarray analysis of rice gene expression revealed mutant-specific gene expression, indicating that signal exchange between rice and M. oryzae commence before fungal penetration of the rice cell. In situ detection of mRNAs for peroxidase and β-1,3-glucanase showed that expression of these genes also occurs after penetration as observed for phytoalexin production. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Tomoaki Kato, Shigeru Tanabe, and Marie Nishimura contributed equally to this work. Accession number of the original microarray data in NCBI is GSE9450.  相似文献   

9.
The hemibiotrophic fungus Colletotrichum truncatum causes anthracnose disease on lentils and a few other grain legumes. It shows initial symptomless intracellular growth, where colonized host cells remain viable (biotrophy), and then switches to necrotrophic growth, killing the colonized host plant tissues. Here, we report a novel effector gene, CtNUDIX, from C. truncatum that is exclusively expressed during the late biotrophic phase (before the switch to necrotrophy) and elicits a hypersensitive response (HR)-like cell death in tobacco leaves transiently expressing the effector. CtNUDIX homologs, which contain a signal peptide and a Nudix hydrolase domain, may be unique to hemibiotrophic fungal and fungus-like plant pathogens. CtNUDIX lacking a signal peptide or a Nudix motif failed to induce cell death in tobacco. Expression of CtNUDIX:eGFP in tobacco suggested that the fusion protein might act on the host cell plasma membrane. Overexpression of CtNUDIX in C. truncatum and the rice blast pathogen, Magnaporthe oryzae, resulted in incompatibility with the hosts lentil and barley, respectively, by causing an HR-like response in infected host cells associated with the biotrophic invasive hyphae. These results suggest that C. truncatum and possibly M. oryzae elicit cell death to signal the transition from biotrophy to necrotrophy.  相似文献   

10.
11.
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.  相似文献   

12.
13.
The physiological and metabolic processes of host plants are manipulated and remodeled by phytopathogenic fungi during infection, revealed obvious signs of biotrophy of the hemibiotrophic pathogen. As we known that effector proteins play key roles in interaction of hemibiotrophic fungi and their host plants. BAS4 (biotrophy-associated secreted protein 4) is an EIHM (extrainvasive hyphal membrane) matrix protein that was highly expressed in infectious hyphae. In order to study whether BAS4 is involved in the transition of rice blast fungus from biotrophic to necrotrophic phase, The susceptible rice cultivar Lijiangxintuanheigu (LTH) that were pre-treated with prokaryotic expression product of BAS4 and then followed with inoculation of the blast strain, more serious blast disease symptom, more biomass such as sporulation and fungal relative growth, and lower expression level of pathogenicity-related genes appeared in lesion of the rice leaves than those of the PBS-pretreated-leaves followed with inoculation of the same blast strain, which demonstrating that BAS4 invitro changed rice defense system to facilitate infection of rice blast strain. And the susceptible rice cultivar (LTH) were inoculated withBAS4-overexpressed blast strain, we also found more serious blast disease symptom and more biomass also appeared in lesion of leaves inoculated with BAS4-overexpressed strain than those of leaves inoculated with the wild-type strain, and expression level of pathogenicity-related genes appeared lower in biotrophic phase and higher in necrotrophic phase of infection, indicating BAS4 maybe in vivo regulate defense system of rice to facilitate transition of biotrophic to necrotrophic phase. Our data demonstrates that BAS4 in vitro and in vivo participates in transition from the biotrophic to the necrotrophic phase of Magnaporthe oryzae.  相似文献   

14.
15.
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4–5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.  相似文献   

16.
To exploit plants as living substrates, biotrophic fungi have evolved remarkable variations of their tubular cells, the hyphae. They form infection structures such as appressoria, penetration hyphae and infection hyphae to invade the plant with minimal damage to host cells. To establish compatibility with the host, controlled secretory activity and distinct interface layers appear to be essential. Colletotrichum species switch from initial biotrophic to necrotrophic growth and are amenable to mutant analysis and molecular studies. Obligate biotrophic rust fungi can form the most specialized hypha: the haustorium. Gene expression and immunocytological studies with rust fungi support the idea that the haustorium is a transfer apparatus for the long-term absorption of host nutrients.  相似文献   

17.
Ustilago maydis is a model organism for the study of biotrophic plant–pathogen interactions. The sexual and pathogenic development of the fungus are tightly connected since fusion of compatible haploid sporidia is prerequisite for infection of the host plant, maize (Zea mays). After plant penetration, the unfolded protein response (UPR) is activated and required for biotrophic growth. The UPR is continuously active throughout all stages of pathogenic development in planta. However, since development of UPR deletion mutants stops directly after plant penetration, the role of an active UPR at later stages of development remained to be determined. Here, we established a gene expression system for U. maydis that uses endogenous, conditionally active promoters to either induce or repress expression of a gene of interest during different stages of plant infection. Integration of the expression constructs into the native genomic locus and removal of resistance cassettes were required to obtain a wild-type-like expression pattern. This indicates that genomic localization and chromatin structure are important for correct promoter activity and gene expression. By conditional expression of the central UPR regulator, Cib1, in U. maydis, we show that a functional UPR is required for continuous plant defence suppression after host infection and that U. maydis relies on a robust control system to prevent deleterious UPR hyperactivation.  相似文献   

18.
RHO-like monomeric G-proteins of plants (ROPs, also called RACs), are involved in plant development and interaction with the environment. The barley (Hordeum vulgare) ROP protein HvRACB has been shown to be required for entry of the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh) into living host cells. To get a deeper insight into evolutionarily conserved functions of ROPs in cell polarity and pathogen responses, we stably expressed constitutively activated (CA) mutant variants of different barley ROPs (HvRACB, HvRAC1, HvRAC3) in barley. CA HvROPs induced epidermal cell expansion and/or abolished polarity in tip growing root hairs. All three CA HvROPs enhanced susceptibility of barley to penetration by Bgh whereas only CA HvRAC1 supported whole cell H2O2 production in non-penetrated cells. Despite increasing penetration by Bgh, CA HvRAC1 promoted callose deposition at sites of fungal attack and resistance to penetration by Magnaporthe oryzae. The data show an involvement of ROPs in polar growth processes of the monocot barley and in responses to fungal pathogens with different life style.  相似文献   

19.
Glutamate homeostasis plays a vital role in central nitrogen metabolism and coordinates several key metabolic functions. However, its function in fungal pathogenesis and development has not been investigated in detail. In this study, we identified and characterized a glutamate synthase gene MoGLT1 in the rice blast fungus Magnaporthe oryzae that was important to glutamate homeostasis. MoGLT1 was constitutively expressed, but showed the highest expression level in appressoria. Deletion of MoGLT1 resulted in a significant reduction in conidiation and virulence. The ΔMoglt1 mutants were defective in appressorial penetration and the differentiation and spread of invasive hyphae in penetrated plant cells. The addition of exogenous glutamic acid partially rescued the defects of the ΔMoglt1 mutants in conidiation and plant infection. Assays for MoAtg8 expression and localization showed that the ΔMoglt1 mutants were defective in autophagy. The ΔMoglt1 mutants were delayed in the mobilization of glycogens and lipid bodies from conidia to developing appressoria. Taken together, our results show that glutamate synthase MoGlt1‐mediated glutamate homeostasis is important for pathogenesis and development in the rice blast fungus, possibly via the regulation of autophagy.  相似文献   

20.
Autophagy vitalizes the pathogenicity of pathogenic fungi   总被引:1,自引:0,他引:1  
《Autophagy》2013,9(10):1415-1425
Plant pathogenic fungi utilize a series of complex infection structures, in particular the appressorium, to gain entry to and colonize plant tissue. As a consequence of the accumulation of huge quantities of glycerol in the cell the appressorium generates immense intracellular turgor pressure allowing the penetration peg of the appressorium to penetrate the leaf cuticle. Autophagic processes are ubiquitous in eukaryotic cells and facilitate the bulk degradation of macromolecules and organelles. The study of autophagic processes has been extended from the model yeast Saccharomyces cerevisiae to pathogenic fungi such as the rice blast fungus Magnaporthe oryzae. Significantly, null mutants for the expression of M. oryzae autophagy gene homologs lose their pathogenicity for infection of host plants. Clarification of the functions and network of interactions between the proteins expressed by M. oryzae autophagy genes will lead to a better understanding of the role of autophagy in fungal pathogenesis and help in the development of new strategies for disease control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号