首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Accumulating evidence suggests that some dietary patterns, specifically high fat diet (HFD), increase the risk of developing sporadic Alzheimer disease (AD). Thus, interventions targeting HFD-induced metabolic dysfunctions may be effective in preventing the development of AD. We previously demonstrated that amyloid precursor protein (APP)-overexpressing transgenic mice fed HFD showed worsening of cognitive function when compared with control APP mice on normal diet. Moreover, we reported that voluntary exercise ameliorates HFD-induced memory impairment and β-amyloid (Aβ) deposition. In the present study, we conducted diet control to ameliorate the metabolic abnormality caused by HFD on APP transgenic mice and compared the effect of diet control on cognitive function with that of voluntary exercise as well as that of combined (diet control plus exercise) treatment. Surprisingly, we found that exercise was more effective than diet control, although both exercise and diet control ameliorated HFD-induced memory deficit and Aβ deposition. The production of Aβ was not different between the exercise- and the diet control-treated mice. On the other hand, exercise specifically strengthened the activity of neprilysin, the Aβ-degrading enzyme, the level of which was significantly correlated with that of deposited Aβ in our mice. Notably, the effect of the combination treatment (exercise and diet control) on memory and amyloid pathology was not significantly different from that of exercise alone. These studies provide solid evidence that exercise is a useful intervention to rescue HFD-induced aggravation of cognitive decline in transgenic model mice of AD.  相似文献   

4.
Immunotherapies are a promising strategy for the treatment of neurological diseases such as Alzheimer's disease (AD), however, transport of antibodies to the brain is severely restricted by the blood–brain barrier (BBB). Furthermore, molecular transport at the BBB is altered in disease, which may affect the mechanism and quantity of therapeutic antibody transport. To better understand the transport of immunotherapies at the BBB in disease, an in vitro BBB model derived from human induced pluripotent stem cells (iPSCs) was used to investigate the endocytic uptake route of immunoglobulin G (IgG). In this model, uptake of fluorescently labeled IgGs is a saturable process. Inhibition of clathrin-mediated endocytosis, caveolar endocytosis, and macropinocytosis demonstrated that macropinocytosis is a major transport route for IgGs at the BBB. IgG uptake and transport were increased after the addition of stimuli to mimic AD (Aβ1–40 and Aβ1–42) and neuroinflammation (tumor necrosis factor-α and interleukin-6). Lastly, caveolar endocytosis increased in the AD model, which may be responsible for the increase in IgG uptake in disease. This study presents an iPSC-derived BBB model that responds to disease stimuli with physiologically relevant changes to molecular transport and can be used to understand fundamental questions about transport mechanisms of immunotherapies in health and neurodegenerative disease.  相似文献   

5.
Sun  Xia  Yin  YueHao  Kong  Lingchao  Chen  Wei  Miao  Changhong  Chen  Jiawei 《Molecular and cellular biochemistry》2019,456(1-2):85-93
Molecular and Cellular Biochemistry - Chymases, a family of serine proteases with chymotryptic activity, play a significant role in cardiac angiotensin II (Ang II) formation from its substrate...  相似文献   

6.
7.
8.
Activation of the classical IκB kinases (IKKα and IKKβ) was previously shown to contribute to obesity-induced inflammation and insulin resistance. Using knockout mice, we investigated whether the related isoform IKKε plays a similar metabolic role.IKKε−/− mice had reduced body weight, leptin levels, as well as higher insulin sensitivity when kept on chow diet. However, inflammatory parameters, measured in liver, adipose tissue and plasma, were either unaltered or showed a trend toward up-regulation (liver NF-κB activity, TNFα and IL-1β expression). Chronic feeding of a high fat diet induced equal obesity and insulin resistance, and similarly induced inflammatory markers, in IKKε−/− and wild-type mice, indicating that under high caloric conditions the inflammatory and metabolic effects of IKKε deficiency were overridden.Taken together, our data indicate that IKKε does not have general pro-inflammatory properties in liver and adipose tissue, and suggest that reduced adiposity is the primary mechanism for improved insulin sensitivity in IKKε−/− mice on chow diet.  相似文献   

9.
Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.  相似文献   

10.
Renal ischemia–reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia–reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or “reperfusion” of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia–reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.  相似文献   

11.
A set of semi-rigid cyclic and acyclic bis-quaternary ammonium analogs, which were part of a drug discovery program aimed at identifying antagonists at neuronal nicotinic acetylcholine receptors, were investigated to determine structural requirements for affinity at the blood–brain barrier choline transporter (BBB CHT). This transporter may have utility as a drug delivery vector for cationic molecules to access the central nervous system. In the current study, a virtual screening model was developed to aid in rational drug design/ADME of cationic nicotinic antagonists as BBB CHT ligands. Four 3D-QSAR comparative molecular field analysis (CoMFA) models were built which could predict the BBB CHT affinity for a test set with an r2 <0.5 and cross-validated q2 of 0.60, suggesting good predictive capability for these models. These models will allow the rapid in silico screening of binding affinity at the BBB CHT of both known nicotinic receptor antagonists and virtual compound libraries with the goal of informing the design of brain bioavailable quaternary ammonium analogs that are high affinity selective nicotinic receptor antagonists.  相似文献   

12.
The number of disease models that involve an aspect of blood–brain barrier (BBB) dysregulation have increased tremendously. The main factors contributing to this expansion have been an increased number of diseases in which the BBB is known to be involved, an increase in the known functions of the BBB, and an increase in the number of models and tools with which those diverse functions can be studied. In many cases, the BBB may be a target of disease; current thinking would include hypertensive encephalopathy and perhaps stroke in this category. Another category are those diseases in which special attributes of the BBB may predispose to disease; for example, the ability of a pathogen to cross the BBB often depends on the pathogen's ability to invoke transcytotic pathways in the brain endothelial or choroid plexus cell. Of special interest are those diseases in which the BBB may be the primary seat of disease or play a major role in the onset or progression of the disease. An increasing number of diseases are so categorized in which BBB dysfunction or dysregulation plays a major role; this review highlights such roles for the BBB including those proposed for Alzheimer's disease and obesity.  相似文献   

13.
Journal of Physiology and Biochemistry - Intestinal ischemia/reperfusion (II/R) injury is a serious pathological phenomenon in underlying hemorrhagic shock, trauma, strangulated intestinal...  相似文献   

14.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

15.
The epithelial–mesenchymal transition (EMT) is a morphogenetic process that results in a loss of epithelial characteristics and the acquisition of a mesenchymal phenotype. First described in embryogenesis, the EMT has been recently implicated in carcinogenesis and tumor progression. In addition, recent evidence has shown that stem-like cancer cells present the hallmarks of the EMT. Some of the molecular mechanisms related to the interrelationships between cancer pathophysiology and the EMT are well-defined. Nevertheless, the precise molecular mechanism by which epithelial cancer cells acquire the mesenchymal phenotype remains largely unknown. This review focuses on various proteomic strategies with the goal of better understanding the physiological and pathological mechanisms of the EMT process.  相似文献   

16.
17.
18.
19.
This short communication will enlighten the readers about the exosome and the epithelial-mesenchymal transition (EMT) related to several complicated events. It also highlighted the therapeutic potential of exosomes against EMT. Exosome toxicology, exosome heterogeneity, and a single exosome profiling approach are also covered in this article. In the future, exosomes could help us get closer to cancer vaccine and precision oncology.  相似文献   

20.
We have investigated the influence of dietary nucleotides on the intestinal immune system in ovalbumin (OVA)-specific T-cell receptor (TCR) transgenic mice (OVA-TCR Tg mice). When mice were supplied with water supplemented with 2% OVA ad libitum, the faecal OVA-specific immunoglobulin A (IgA) level significantly increased in those fed a nucleotide-supplemented diet (NT(+) diet) compared with those fed a nucleotide-free control diet (NT(–) diet). In the NT(+) diet-fed mice, secretion of transforming growth factor β (TGF-β), which is an isotype-specific switch factor for IgA, from intestinal epithelial cells (IECs) was significantly increased. Furthermore, an increased proportion of intestinal intraepithelial lymphocytes (IELs) bearing γδ TCR (TCRγδ+ IELs) and increased secretion from IECs of interleukin 7 (IL-7), which is essential for the development of TCRγδ+ IELs, were also observed in OVA-TCR-Tg mice fed the NT(+) diet, as we previously demonstrated using BALB/c mice (Nagafuchi et al., Biosci. Biotechnol. Biochem. 64: 1459-65 (2000)). Considering that TCRγδ+ T cells and TGF-β are important for an induction of the mucosal IgA response, our results suggest that dietary nucleotides augment the mucosal OVA-specific IgA response by increasing the secretion of TGF-β from IECs and the proportion of TCRγδ+ IELs. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号