首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Excessive fishing pressure can induce population declines or complete collapse of fisheries. Unless commercial and recreational fisheries for K-selected fishes, or those with slow growth and late maturation, are carefully managed, declines in abundance or fishery collapse is probable. Paddlefish Polyodon spathula,are a K-selected species that experienced historical declines in abundance as a result of habitat degradation and overfishing. Mark-recapture studies are well-suited for long-lived fishes by providing information on population density and vital rates. For sustainable commercial or recreational fisheries targeting species such as the paddlefish, managers require accurate estimates of population vital rates including survival, abundance, and exploitation. We used a Montana Fish, Wildlife & Parks (MFWP) mark-recapture dataset and modified Jolly-Seber (POPAN) models to estimate survival, recapture, probability of entry, and abundance of 8,518 tagged paddlefish over a 25-year period. With many supporting estimates including stable survival (0.92 for females, mean of 0.82 for males), low exploitation rates (means of 2.6% for females and 2.9% for males), and stable abundance estimates (25-year mean of 12,309 individuals for both sexes), the Fort Peck paddlefish population appears to be stable and well-managed over the past 25 years. Presently, this is the only study focused on paddlefish in North America that has estimated survival and abundance for both male and female paddlefish using contemporary analyses. This research provided a unique opportunity to highlight that the effort exerted by management agencies to collect long-term field data is extremely useful to our understanding of fish populations and management.  相似文献   

2.
1. Natal conditions and senescence are two major factors shaping life-history traits of wild animals. However, such factors have rarely been investigated together, and it remains largely unknown whether they interact to affect age-specific performance. 2. We used 27 years of longitudinal data collected on tawny owls with estimates of prey density (field voles) from Kielder Forest (UK) to investigate how prey density at birth affects ageing patterns in reproduction and survival. 3. Natal conditions experienced by tawny owls, measured in terms of vole density, dramatically varied among cohorts and explained 87% of the deviance in first-year apparent survival (annual estimates ranging from 0·07 to 0·33). 4. We found evidence for senescence in survival for females as well as for males. Model-averaged estimates showed that adult survival probability declined linearly with age for females from age 1. In contrast, male survival probability, lower on average than for female, declined after a plateau at age 1-3. 5. We also found evidence for reproductive senescence (number of offspring). For females, reproductive performance increased until age 9 then declined. Males showed an earlier decline in reproductive performance with an onset of senescence at age 3. 6. Long-lasting effects of natal environmental conditions were sex specific. Female reproductive performance was substantially related to natal conditions (difference of 0·24 fledgling per breeding event between females born in the first or third quartile of vole density), whereas male performance was not. We found no evidence for tawny owls born in years with low prey density having accelerated rates of senescence. 7. Our results, combined with previous findings, suggest the way natal environmental conditions affect senescence varies not only across species but also within species according to gender and the demographic trait considered.  相似文献   

3.
Male–male contest behavior can contribute to spatial distributions of male pinnipeds during breeding seasons. To maximize breeding opportunities, the most competitive males would be expected to be surrounded by the highest numbers of reproductive-age females. As information regarding fine-scale spatial ecology of Weddell seals is lacking, we performed an exploratory study using kernel density analyses to evaluate age-specific habitat use of male Weddell seals in Erebus Bay, Antarctica. Additionally, we investigated the relationship between age and number of surrounding reproductive-age females using a competing set of regression models in a Bayesian framework that considered different functional forms of age while incorporating individual heterogeneity. As male adult Weddell seals aged, to at least 20 years, they were more likely to be found in areas associated with the greatest densities of reproductive-age females, but individual heterogeneity also influenced the number of reproductive-age female neighbors. The youngest males tended to haul out in offshore areas associated with better hunting, and older males tended to settle in more nearshore areas associated with more pup production. Our findings from this preliminary investigation indicate that male Weddell seal spatial behavior during the breeding season varies with age and individual and might be related to reproductive activity.  相似文献   

4.
Investigators have rarely sought evidence for senescence in natural populations because it is assumed that relatively few individuals will survive long enough in the wild to exhibit the intrinsic increase in mortality with age expected from senescent individuals. Nevertheless, senescence has been documented in some natural populations, mostly in birds and mammals. Here we report on a comparative study of senescence in two natural populations of guppies (Poecilia reticulata). We document senescence as an age-specific increase in mortality rate, with use of mark-recapture studies and implementation of program MARK for analysis of such observations. Extrinsic mortality was controlled for by choosing populations that experience low rates of predation because they coexist with only a single piscine predator (Rivulus hartii). These populations differ in their evolutionary history because one was native to such a site whereas the other was introduced to a site that previously contained no guppies. The source of the introduced guppies was a high-predation population downstream below a barrier waterfall. Theory predicts that the guppies derived from a high-predation locality should experience senescence at an earlier age than the native low-predation population; however, the historical differences among these populations are also confounded with everything else that differs among the two localities. We found that females from a natural low-predation population have delayed senescence compared with the recently established population and hence that the differences among localities in senescence conform to theoretical predictions. The males from natural low-predation environments also had lower overall mortality rates, but contrary to predictions, the pattern of senescence for males did not differ between populations. The difference between the sexes is potentially attributable to two factors that lower the statistical power for distinguishing differences in the age-specific acceleration of mortality in males. One factor is that males have higher mortality rates, so fewer survive to advanced ages. A second is that we had a greater ability to discriminate among older age classes in females. We also found that the introduced population sustained a higher rate of disease than the native low-predation population. Such disease may represent a confounding factor in our comparison, but it may also reflect one of the trade-offs inherent in the life-history differences of these populations.  相似文献   

5.
This study quantified both the age- and sex-specific survival rates of juveniles and adults, and tested for interannual differences in age-specific survival rates of the southern elephant seal population at Marion Island. Pups were tagged on an annual basis from 1983 onwards at Marion Island, and a consistent recapture program yielded data that was analysed using the software package MARK to obtain maximum-likelihood estimates of survival and capture probability. On average, 1st-year survival was 0.58 and 0.62, and survival rate averaged over the first 3 years of life, 0.69 and 0.74 for males and females, respectively. From years 4 to 9, the average survival rate was 0.66 and 0.75 for males and females, respectively. Survival estimates for elephant seals in their 10th–13th year are also presented, although these are based on very small sample sizes. Averages of age-specific survival estimates from the earlier (mostly 1983–1987 cohorts) and later (mostly 1988–1992 cohorts) periods were compared and considerable reductions were observed in 4th- and 5th-year male survival, and 4th-year female survival. The comparatively low adult survival is suggested as the proximate cause, and food limitation as deduced from the decline in survival of elephant seals with comparatively high energetic demands as the ultimate cause behind the population decline at Marion Island. Although not tied in with the decline of the population, 1987, 1990 and 1993 were identified as high-mortality years. Received: 14 December 1998 / Accepted: 14 June 1999  相似文献   

6.
Bats live substantially longer than any other similar‐sized mammal despite high metabolic rates during flight. The underlying causes for the longevity of bats and the question whether bats exhibit signs of senescence – a progressive deterioration in performance – are still unclear. Here, we describe rates of senescence in individual annual fitness, survival and reproduction using survival and recruitment data collected over an 18‐yr period from 77 males and 81 females in a wild population of Saccopteryx bilineata (greater sac‐winged bat), a polygynous species inhabiting colonies where female groups are defended each by a territorial male. In individuals older than 4 yr of age, individual fitness contribution, survival and recruitment declined with increasing age in males but not in females. Rates of senescence in annual individual fitness and in reproduction of males were at least an order of magnitude higher than those of females. This finding might be explained by the ‘disposable soma theory’ that attributes senescence to an optimal allocation of resources to somatic maintenance and competing traits such as reproduction. The rate of senescence in the survival of males was also significant but of the same order of magnitude as the (non‐significant) rate of females. Unlike many other polygynous mammals, greater sac‐winged bats show little overt male–male competition. As senescence in survival was only weak in males, our results are consistent with the theories for polygynous mammals, which view the trade‐off between male investment in physical traits for intense male–male competition against survival as a major source of the decline of male survival with age. This is the first study to demonstrate sex‐specific senescence rates in a wild population of a small, long‐lived mammalian species.  相似文献   

7.
Actuarial senescence is widespread in age‐structured populations. In growing populations, the progressive decline of Hamiltonian forces of selection with age leads to decreasing survival. As actuarial senescence is overcompensated by a high fertility, actuarial senescence should be more intense in species with high reproductive effort, a theoretical prediction that has not been yet explicitly tested across species. Wild boar (Sus scrofa) females have an unusual life‐history strategy among large mammals by associating both early and high reproductive effort with potentially long lifespan. Therefore, wild boar females should show stronger actuarial senescence than similar‐sized related mammals. Moreover, being polygynous and much larger than females, males should display higher senescence rates than females. Using a long‐term monitoring (18 years) of a wild boar population, we tested these predictions. We provided clear evidence of actuarial senescence in both sexes. Wild boar females had earlier but not stronger actuarial senescence than similar‐sized ungulates. Both sexes displayed similar senescence rates. Our study indicates that the timing of senescence, not the rate, is associated with the magnitude of fertility in ungulates. This demonstrates the importance of including the timing of senescence in addition to its rate to understand variation in senescence patterns in wild populations.  相似文献   

8.
Estimating survival and cause-specific mortality of male eastern wild turkeys (Meleagris gallopavo silvestris) is important for understanding population dynamics and implementing appropriate harvest management. To better understand age-specific estimates of annual survival and harvest rates, we captured and marked male wild turkeys with leg bands (n = 311) or bands and transmitters (n = 549) in Georgia, Louisiana, North Carolina, and South Carolina, USA, during 2014–2022. We fitted time to event models to data from radio-marked birds to estimate cause-specific mortality and annual survival. We used band recovery models incorporating both band recovery and telemetry data to further investigate harvest rates and survival. Annual survival from known-fate models in hunted populations was 0.54 (95% CI = 0.49–0.59) for adults and 0.86 (95% CI = 0.81–0.92) for juveniles. Cause-specific mortality analysis produced an annual harvest estimate of 0.29 (95% CI = 0.24–0.33) for adults and 0.02 (95% CI = 0.01–0.03) for juveniles, whereas predation was 0.15 (95% CI = 0.10–0.20) and 0.12 (95% CI = 0.08–0.17), respectively. Annual survival for adult males in a non-hunted population was 0.83 (95% CI = 0.72–0.97). Survival rate was negatively correlated with harvest rate, indicating harvest was an additive mortality source. Annual survival from band recovery models was 0.40 (95% CI = 0.37–0.44) for adults and 0.88 (95% CI = 0.81– 0.93) for juveniles, whereas annual harvest estimates were 0.24 (95% CI = 0.23–0.25) for adults and 0.04 (95% CI = 0.03–0.05) for juveniles. Both models suggested no differences in annual survival across years or among study areas, which included privately owned and public properties. Harvest was an additive mortality source for male wild turkeys, suggesting that managers interested in increasing annual survival of adult males could consider ways of reducing harvest rates.  相似文献   

9.
Variability in juvenile survival rate is expected to be an important component of the dynamics of long-lived animal populations. Across a range of species, individual variation in juvenile body mass has been shown to be an important cause of variation in fates of juveniles. Our goal in this paper was to estimate age-specific apparent survival rates for Weddell seals ( Leptonychotes weddellii ) in Erebus Bay, Antarctica, and to investigate hypotheses about relationships between body mass at weaning and apparent survival rate for juveniles. Mark–resighting models found average apparent juvenile survival rate (survival from weaning to age 3) was similar between males and females, and revealed positive relationships between body mass at weaning and apparent juvenile survival rate. The effects of body mass on juvenile survival rate differed between the sexes and the relationship between body mass and survival rate was stronger in males. These results indicate that the magnitude of energy transferred from mother to pup during lactation likely has important consequences on offspring survival rate and maternal fitness.  相似文献   

10.
Variation in probability of first reproduction of Weddell seals   总被引:3,自引:0,他引:3  
1. For many species, when to begin reproduction is an important life-history decision that varies by individual and can have substantial implications for lifetime reproductive success and fitness. 2. We estimated age-specific probabilities of first-time breeding and modelled variation in these rates to determine age at first reproduction and understand why it varies in a population of Weddell seals in Erebus Bay, Antarctica. We used multistate mark-recapture modelling methods and encounter histories of 4965 known-age female seals to test predictions about age-related variation in probability of first reproduction and the effects of annual variation, cohort and population density. 3. Mean age at first reproduction in this southerly located study population (7.62 years of age, SD=1.71) was greater than age at first reproduction for a Weddell seal population at a more northerly and typical latitude for breeding Weddell seals (mean=4-5 years of age). This difference suggests that age at first reproduction may be influenced by whether a population inhabits the core or periphery of its range. 4. Age at first reproduction varied from 4 to 14 years, but there was no age by which all seals recruited to the breeding population, suggesting that individual heterogeneity exists among females in this population. 5. In the best model, the probability of breeding for the first time varied by age and year, and the amount of annual variation varied with age (average variance ratio for age-specific rates=4.3%). 6. Our results affirmed the predictions of life-history theory that age at first reproduction in long-lived mammals will be sensitive to environmental variation. In terms of life-history evolution, this variability suggests that Weddell seals display flexibility in age at first reproduction in order to maximize reproductive output under varying environmental conditions. Future analyses will attempt to test predictions regarding relationships between environmental covariates and annual variation in age at first reproduction and evaluate the relationship between age at first reproduction and lifetime reproductive success.  相似文献   

11.
A study on populations of Glossina morsitans morsitans Westwood on Antelope Island, Lake Kariba, Zimbabwe provided Jolly-Seber (J-S) mark-recapture estimates of adult survival and Moran curve estimates of the overall survival of all developmental stages. For females, Moran survival estimates derived using ox fly-round catches showed similar trends to, but were more variable than, those calculated from J-S population estimates. Regression of one set on the other removed only 26% of the variance. Undue emphasis should not be placed on small changes in Moran survival estimates based on sequences of catches. Catch data cannot provide Moran estimates of male survival probabilities and no comparison is thus possible with estimates from the J-S data. The J-S and the Moran approaches were combined to estimate survival probabilities of the immature stages of male and female tsetse. The overall survival per three-week period averaged 45% for males and 59% for females, comprising mature adult survivals of 27 and 46%, and pooled survivals of immature stages of 59 and 77%, respectively. The high survival of immature flies is due to the sheltered, inactive nature of pupal life. Adult and overall survival probabilities were highly correlated in males (r(2) = 0.61) but less so in females (r(2) = 0.24) where capture rates were lower and variance in the results greater. Immature and overall survival was more highly correlated for both sexes, with r(2) = 0.77 and 0.53 for males and females respectively. When a fixed pupal mortality of 1% per day was assumed, estimates of the survival of young adult males suggested that these were even lower than the survival of mature flies at the harshest times of the year, but were not markedly different when overall survival was high. Assuming equal mortality in all adults enabled the estimation of pupal survival. These had high variances but there was no evidence of any difference between the survival probabilities of male and female pupae.  相似文献   

12.
There are only a few recent studies that have demonstrated senescence in ungulates and nothing is known regarding how patterns of senescence may vary as a function of density Senescence in general is linked to the cost of reproduction, which probably increases with density in ungulates and may differ between the sexes. Further, senescence in ungulates is also regarded to be a function of tooth wear rates. As density dependence and sexual differences in food choice have been well documented, this may lead to different tooth wear rates and, thus, possibly density-dependent and sex-specific patterns of senescence. We therefore investigated the effects of age, sex, density and their possible interactions on the variability of body weight in 29,047 red deer harvested during 1965-1998 from Norway, out of which 380 males and 1452 females were eight years or older. There was clear evidence that spatio-temporal variation in density correlated negatively with body weights. In addition, there was evidence of senescence in both male and female red deer. Age at onset of senescence in females was after 20 years of age and independent of population density. In males, the onset and rate of senescence increased with increasing population density. The onset of senescence for males was at ca. 12 years of age at low density, but decreased to approximately ten years of age at high density. The pattern of density-dependent senescence in males, but not that in females, can be explained if (i) the cost of reproduction increases with density more strongly in male than in female red deer, and/or (ii) tooth wear rates are density dependent in males, but not in females. We discuss the ability of these two different, not mutually exclusive hypotheses in explaining the observed pattern of senescence.  相似文献   

13.
Recent studies have found age-specific variations in reproductive performance amongst Weddell seals, Leptonychotes weddellii , and we hypothesized age-related variations in maternal body mass as a mechanism linking maternal age and the observed patterns of reproductive performance. We evaluated the effects of maternal traits such as age and reproductive experience and the effects of environmental variations on maternal body mass at parturition. Maternal body mass at parturition showed substantial age- and environmental-related variations. Maternal body mass increased with age through the young and middle ages, and evidence of senescent declines in body mass was found amongst the oldest ages. Additionally, body mass at parturition was strongly influenced by environmental variations during the pregnancy period, specifically sea-ice extent and the state of the El-Niño Southern Oscillation. Patterns of age-specific variations in body mass were consistent with age-specific patterns of offspring survival probability, which supported our hypothesis that changes in body mass link maternal age and reproductive performance in the Weddell seal. Further, environmental conditions during pregnancy may be an important component of Weddell seal reproductive performance.  相似文献   

14.
Avian annual survival has received much attention, yet little is known about seasonal patterns in survival, especially of migratory passerines. In order to evaluate survival rates and timing of mortality within the breeding season of adult reed warblers (Acrocephalus scirpaceus), mark-recapture data were collected in southwest Poland, between 2006 and 2012. A total of 612 individuals (304 females and 308 males) were monitored throughout the entire breeding season, and their capture-recapture histories were used to model survival rates. Males showed higher survival during the breeding season (0.985, 95% CI: 0.941–0.996) than females (0.869, 95% CI: 0.727–0.937). Survival rates of females declined with the progression of the breeding season (from May to August), while males showed constant survival during this period. We also found a clear pattern within the female (but not male) nesting cycle: survival was significantly lower during the laying, incubation, and nestling periods (0.934, 95% CI: 0.898–0.958), when birds spent much time on the nest, compared to the nest building and fledgling periods (1.000, 95% CI: 1.00–1.000), when we did not record any female mortality. These data (coupled with some direct evidence, like bird corpses or blood remains found next to/on the nest) may suggest that the main cause of adult mortality was on-nest predation. The calculated survival rates for both sexes during the breeding season were high compared to annual rates reported for this species, suggesting that a majority of mortality occurs at other times of the year, during migration or wintering. These results have implications for understanding survival variation within the reproductive period as well as general trends of avian mortality.  相似文献   

15.
Vital rates for small, non-breeding individuals are important components of population dynamics for many species, but often individuals of these sizes are difficult to locate, capture, and track. As such, biologists frequently lack reliable estimates of juvenile survival because sample sizes and recapture rates for this life stage are low. Long-lived animals often take many years to reach sexual maturity and spend much of this time in the smaller size classes, making them sensitive to changes in survival rates. We estimated the survival rates of all size classes for the northern map turtle (Graptemys geographica) using a mark-recapture dataset with >3,500 captures from 2019–2021 and 210 nests from 2018–2021. As turtle size increased, annual survival probability increased regardless of sex. Estimated annual survival probability for turtles >18 cm long (i.e., adult females >15 years) was about 0.95, over 4 times higher than turtles that were 3 cm long (i.e., hatchlings <1 year; 0.22 annual survival probability). Although we did not observe a difference in survival probability between sexes of any size class, adult females are nearly twice the size of adult males, leading to an increased annual survival probability for females of 0.95, compared to 0.80 for males. Changes in adult survival had the greatest influence on population estimates over time, with temporary decreases, such as those due to poaching or an environmental disaster, potentially leading to unrecoverable decreases in the overall population size. Our study provides detailed survival rates for all size classes in a long-lived turtle, which are necessary to assess population stability and can be used to determine the most effective conservation or management practices.  相似文献   

16.
Populations of Drosophila melanogaster that had been selected for divergent rates of senescence were compared with respect to age-specific male mating ability. The competitive mating ability of males from populations with delayed senescence was inferior to that of males from populations with higher rates of senescence when males were young. This relationship was reversed when males were older. For noncompetitive mating ability and for recovery of fertility after an exhaustive mating bout, there was no difference between populations with different rates of senescence when males were young. However when males were older, flies from populations selected for delayed senescence again had superior mating ability. Thus, rates of male reproductive senescence can be altered in predictable ways by natural selection. The results for the competitive mating tests are consistent with the hypothesis that antagonistic gene action between early- and late-life fitness components influences the evolution of senescence in these populations.  相似文献   

17.
ABSTRACT We investigated survival for male, female, and first-year Cape Sable seaside sparrows (Ammodramus maritimus mirabilis, hereafter sparrows), a federally endangered bird restricted to the Florida Everglades, USA. Accurate estimates of survival are critical to improve management decisions and population estimates for this and other threatened species. We used Program MARK to evaluate effects of age, sex, population membership, temporal variation, and ground-water levels on annual survival from mark-recapture data collected across 3 sparrow populations from 1997 to 2007. We found little evidence that annual survival rates differed between the populations or across ground-water levels, but we found high variability between years for both adult and juvenile survival. Our results revealed female sparrows experienced 14–19% lower survival than males. Sparrows experienced much lower survival during their first year of life and were short-lived (2–3 yr). Our results highlight sparrows' susceptibility to population declines and suggest that management actions aimed at increasing survival may be effective for this species' management.  相似文献   

18.
Harbor seal breeding behavior and habitats constrain opportunities for individual‐based studies, and no current estimates of both survival and fecundity exist for any of the populations studied worldwide. As a result, the drivers underlying the variable trends in abundance exhibited by harbor seal populations around the world remain uncertain. We developed an individual‐based study of harbor seals in northeast Scotland, whereby data were collected during daily photo‐identification surveys throughout the pupping seasons between 2006 and 2011. However, a consequence of observing seals remotely meant that information on sex, maturity‐stage, or breeding status was not always available. To provide unbiased estimates of survival rates we conditioned initial release of individuals on the first time sex was known to estimate sex‐specific survival rates, while a robust design multistate model accounting for uncertainty in breeding status was used to estimate reproductive rate of multiparous and ≥3‐yr‐old females. Survival rates were estimated at 0.95 (95% CI = 0.91–0.97) for females and 0.92 (0.83–0.96) for males, while reproductive rate was estimated at 0.89 (0.75–0.95) for multiparous and 0.69 (0.64–0.74) for ≥3‐yr‐old females. Stage‐based population modeling indicated that this population should be recovering, even under the current shooting quotas implemented by the recent management plan.  相似文献   

19.
A breeding population of Rana japonica was studied at a marsh on the campus of Hiroshima University in Higashi-Hiroshima during the five years 1995-1999. The mark-recapture study showed that the size of the breeding population varied from year to year, and increased more than twofold in 1999 in comparison with the preceding years. The sex ratio of the breeding population (male/female) was from nearly 1.0 to 1.6. Frogs of both sexes were estimated to breed for the first time at the age of one or two years, and their maximum age was four years according to skeletochronology using phalanges and mark-recapture. Modes of the estimated ages were one year for males during the study years except 1997, but one or two years for females. Two thirds of breeding frogs, irrespective of their sex, were estimated to breed only once throughout their lives.  相似文献   

20.
Individual performance is expected to decrease with age because of senescence. We analyzed long-term data collected on a North American red squirrel population to assess the influence of age on body mass, survival and reproductive performance, and to study the effects of sex and of environmental conditions during early life on senescence patterns. Mass of males and females did not decrease at the end of life, possibly because body mass mostly reflects overall size in income breeders such as red squirrels. On the other hand, we found evidence of senescence in survival of both sexes and, to a lesser extent, in female reproductive traits. When compared to females, males had both higher survival and delayed decrease in survival, suggesting a weaker senescence in males. The offspring survival from weaning to one year of age also decreased with increasing mother age. This suggests that older females produce juveniles of lower quality, providing evidence of an intergenerational effect of mother's age on juveniles' fitness. Finally, our results indicate that variations in food conditions during early life influenced the reproductive tactics of females in the first years of their life, but not senescence patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号