首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
ItICE1, a ICE1-like gene, was isolated from a cDNA library from cold-treated woad (Isatis tinctoria L.) tissues. Expression analysis revealed that the ItICE1 gene was expressed constitutively and was predominant in the leaves of woad seedlings and that its mRNA accumulation was altered by salt stress and abscisic acid application, but not by dehydration and cold stresses. The transgenic rice lines overexpressing ItICE1 showed no growth retardation under normal growth conditions as well as enhanced tolerance to cold stress. Physiological assays showed that ItICE1 not only increased the accumulation of free proline and chlorophyll in transgenic rice lines under cold stress, but also reduced malondialdehyde content and electrolyte leakage. The analysis of gene expression in transgenic rice lines indicated that the maize ubiquitin promoter could respond to cold stress and upregulate ItICE1 gene expression level under its control. Under cold stress conditions, transgenic lines had a remarkably increased expression of OsDREB1A, J013078A14, 001-125-G03, 001-023-B08 and J023042N13 compared to wild-type plants (P < 0.05), implying that ItICE1 functions in the CBF/DREB1 cold-response pathway. These results demonstrate that ItICE1 plays an important regulatory role in the improvement of tolerance to cold stress in rice and is potentially useful for improving the cold tolerance of other plants.  相似文献   

8.
9.
10.
Two quantitative trait loci (Fr-H1 and Fr-H2) for frost tolerance (FT) have been discovered on the long arm of chromosome 5H in barley. Two tightly linked groups of CBF genes, known to play a key role in the FT regulatory network in A. thaliana, have been found to co-segregate with Fr-H2. Here, we investigate the allelic variations of four barley CBF genes (HvCbf3, HvCbf6, HvCbf9 and HvCbf14) in a panel of European cultivars, landraces and H. spontaneum accessions. In the cultivars a reduction of nucleotide and haplotype diversities in CBFs compared with the landraces and the wild ancestor H. spontaneum, was evident. In particular, in cultivars the loss of HvCbf9 genetic variants was higher compared to other sequences. In order to verify if the pattern of CBF genetic variants correlated with the level of FT, an association procedure was adopted. The pairwise analysis of linkage disequilibrium (LD) among the genetic variants in four CBF genes was computed to evaluate the resolution of the association procedure. The pairwise plotting revealed a low level of LD in cultivated varieties, despite the tight physical linkage of CBF genes analysed. A structured association procedure based on a general liner model was implemented, including the variants in CBFs, of Vrn-H1, and of two reference genes not involved in FT (α-Amy1 and Gapdh) and considering the phenotypic data for FT. Association analysis recovered two nucleotide variants of HvCbf14 and one nucleotide variant of Vrn-H1 as statistically associated to FT.  相似文献   

11.
12.
Lee BH  Henderson DA  Zhu JK 《The Plant cell》2005,17(11):3155-3175
  相似文献   

13.
14.
Dongxiang Wild Rice (Oryza rufipogon) is the northernmost wild rice in the world known to date and has extremely high cold tolerance and many other adversity-resistant properties. To identify the genes responsible for the high stress tolerance, we isolated and characterized a basic helix-loop-helix (bHLH) protein gene OrbHLH001 from Dongxiang Wild Rice. The gene encodes an ICE1-like protein containing multiple homopeptide repeats. Expression of OrbHLH001 is induced by salt stress and is predominant in the shoots of wild rice seedlings. Overexpression of OrbHLH001 enhanced the tolerance to freezing and salt stresses in transgenic Arabidopsis. Examination of the expression of cold-responsive genes in transgenic Arabidopsis showed that the function of OrbHLH001 differs from that of ICE1 and is independent of a CBF/DREB1 cold-response pathway.  相似文献   

15.
16.
17.
18.
To develop cold-tolerant maize germplasms and identify the activation of INDUCER OF CRT/DRE-BINDING FACTOR EXPRESSION (ICE1) expression in response to cold stress, RT-PCR was used to amplify the complete open reading frame sequence of the ICE1 gene and construct the plant expression vector pCAMBIA3301-ICE1-Bar. Immature maize embryos and calli were transformed with the recombinant vector using Agrobacterium tumefaciens-mediated transformations. From the regenerated plantlets, three T1 lines were screened and identified by PCR. A Southern blot analysis showed that a single copy of the ICE1 gene was integrated into the maize (Zea mays L.) genomes of the three T1 generations. Under low temperature-stress conditions (4°C), the relative conductivity levels decreased by 27.51%–31.44%, the proline concentrations increased by 12.50%–17.50%, the malondialdehyde concentrations decreased by 16.78%–18.37%, and the peroxidase activities increased by 19.60%–22.89% in the T1 lines compared with those of the control. A real-time quantitative PCR analysis showed that the ICE1 gene was ectopically expressed in the roots, stems, and leaves of the T1 lines. ICE1 positively regulates the expression of the CBF genes in response to cold stress. Thus, this study showed the successful transformation of maize with the ICE1 gene, resulting in the generation of a new maize germplasm that had increased tolerance to cold stress.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号