共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Qi Li Ji Wang Tian Bai Ming Zhang Yuling Jia Danyu Shen Meixiang Zhang Daolong Dou 《Molecular Plant Pathology》2020,21(4):502-511
EDS1 (Enhanced Disease Susceptibility 1) plays a crucial role in both effector-triggered immunity activation and plant basal defence. However, whether pathogen effectors can target EDS1 or an EDS1-related pathway to manipulate immunity is rarely reported. In this study, we identified a Phytophthora capsici Avirulence Homolog (Avh) RxLR (Arg-any amino acid-Leu-Arg) effector PcAvh103 that interacts with EDS1. We demonstrated that PcAvh103 can facilitate P. capsici infection and is required for pathogen virulence. Furthermore, genetic evidence showed that PcAvh103 contributes to virulence through targeting EDS1. Finally, PcAvh103 specifically interacts with the lipase domain of EDS1 and can promote the disassociation of EDS1–PAD4 (Phytoalexin Deficient 4) complex in planta. Together, our results revealed that the P. capsici RxLR effector PcAvh103 targets host EDS1 to suppress plant immunity, probably through disrupting the EDS1–PAD4 immune signalling pathway. 相似文献
3.
4.
Nan Zhang Jiyun Yang Anfei Fang Jiyang Wang Dayong Li Yuejiao Li Shanzhi Wang Fuhao Cui Junjie Yu Yongfeng Liu You-Liang Peng Wenxian Sun 《Molecular Plant Pathology》2020,21(4):445-459
The biotrophic fungal pathogen Ustilaginoidea virens causes rice false smut, a newly emerging plant disease that has become epidemic worldwide in recent years. The U. virens genome encodes many putative effector proteins that, based on the study of other pathosystems, could play an essential role in fungal virulence. However, few studies have been reported on virulence functions of individual U. virens effectors. Here, we report our identification and characterization of the secreted cysteine-rich protein SCRE1, which is an essential virulence effector in U. virens. When SCRE1 was heterologously expressed in Magnaporthe oryzae, the protein was secreted and translocated into plant cells during infection. SCRE1 suppresses the immunity-associated hypersensitive response in the nonhost plant Nicotiana benthamiana. Induced expression of SCRE1 in rice also inhibits pattern-triggered immunity and enhances disease susceptibility to rice bacterial and fungal pathogens. The immunosuppressive activity is localized to a small peptide region that contains an important ‘cysteine-proline-alanine-arginine-serine’ motif. Furthermore, the scre1 knockout mutant generated using the CRISPR/Cas9 system is attenuated in U. virens virulence to rice, which is greatly complemented by the full-length SCRE1 gene. Collectively, this study indicates that the effector SCRE1 is able to inhibit host immunity and is required for full virulence of U. virens. 相似文献
5.
Wanying Zhang Haiyang Li Limin Wang Shunpei Xie Yuan Zhang Ruijiao Kang Mengjuan Zhang Panpan Zhang Yonghui Li Yanfeng Hu Min Wang Linlin Chen Hongxia Yuan Shengli Ding Honglian Li 《Molecular Plant Pathology》2022,23(2):218-236
The hemibiotrophic pathogen Bipolaris sorokiniana causes root rot, leaf blotching, and black embryos in wheat and barley worldwide, resulting in significant yield and quality reductions. However, the mechanism underlying the host–pathogen interactions between B. sorokiniana and wheat or barley remains unknown. The B. sorokiniana genome encodes a large number of uncharacterized putative effector proteins. In this study, we identified a putative secreted protein, CsSp1, with a classic N-terminal signal peptide, that is induced during early infection. A split-marker approach was used to knock out CsSP1 in the Lankao 9-3 strain. Compared with the wild type, the deletion mutant ∆Cssp1 displayed less radial growth on potato dextrose agar plates and produced fewer spores, and complementary transformation completely restored the phenotype of the deletion mutant to that of the wild type. The pathogenicity of the deletion mutant in wheat was attenuated even though appressoria still penetrated the host. Additionally, the infectious hyphae in the deletion mutant became swollen and exhibited reduced growth in plant cells. The signal peptide of CsSp1 was functionally verified through a yeast YTK12 secretion system. Transient expression of CsSp1 in Nicotiana benthamiana inhibited lesion formation caused by Phytophthora capsici. Moreover, CsSp1 localized in the nucleus and cytoplasm of plant cells. In B. sorokiniana-infected wheat leaves, the salicylic acid-regulated genes TaPAL, TaPR1, and TaPR2 were down-regulated in the ∆Cssp1 strain compared with the wild-type strain under the same conditions. Therefore, CsSp1 is a virulence effector and is involved in triggering host immunity. 相似文献
6.
A novel Meloidogyne graminicola effector,MgMO237, interacts with multiple host defence‐related proteins to manipulate plant basal immunity and promote parasitism 下载免费PDF全文
Jiansong Chen Lili Hu Longhua Sun Borong Lin Kun Huang Kan Zhuo Jinling Liao 《Molecular Plant Pathology》2018,19(8):1942-1955
Plant‐parasitic nematodes can secrete effector proteins into the host tissue to facilitate their parasitism. In this study, we report a novel effector protein, MgMO237, from Meloidogyne graminicola, which is exclusively expressed within the dorsal oesophageal gland cell and markedly up‐regulated in parasitic third‐/fourth‐stage juveniles of M. graminicola. Transient expression of MgMO237 in protoplasts from rice roots showed that MgMO237 was localized in the cytoplasm and nucleus of the host cells. Rice plants overexpressing MgMO237 showed an increased susceptibility to M. graminicola. In contrast, rice plants expressing RNA interference vectors targeting MgMO237 showed an increased resistance to M. graminicola. In addition, yeast two‐hybrid and co‐immunoprecipitation assays showed that MgMO237 interacted specifically with three rice endogenous proteins, i.e. 1,3‐β‐glucan synthase component (OsGSC), cysteine‐rich repeat secretory protein 55 (OsCRRSP55) and pathogenesis‐related BetvI family protein (OsBetvI), which are all related to host defences. Moreover, MgMO237 can suppress host defence responses, including the expression of host defence‐related genes, cell wall callose deposition and the burst of reactive oxygen species. These results demonstrate that the effector MgMO237 probably promotes the parasitism of M. graminicola by interacting with multiple host defence‐related proteins and suppressing plant basal immunity in the later parasitic stages of nematodes. 相似文献
7.
Rice Exo70 interacts with a fungal effector,AVR‐Pii,and is required for AVR‐Pii‐triggered immunity 下载免费PDF全文
Koki Fujisaki Yoshiko Abe Akiko Ito Hiromasa Saitoh Kentaro Yoshida Hiroyuki Kanzaki Eiko Kanzaki Hiroe Utsushi Tetsuro Yamashita Sophien Kamoun Ryohei Terauchi 《The Plant journal : for cell and molecular biology》2015,83(5):875-887
Vesicle trafficking including the exocytosis pathway is intimately associated with host immunity against pathogens. However, we still have insufficient knowledge about how it contributes to immunity, and how pathogen factors affect it. In this study, we explore host factors that interact with the Magnaporthe oryzae effector AVR‐Pii. Gel filtration chromatography and co‐immunoprecipitation assays identified a 150 kDa complex of proteins in the soluble fraction comprising AVR‐Pii and OsExo70‐F2 and OsExo70‐F3, two rice Exo70 proteins presumably involved in exocytosis. Simultaneous knockdown of OsExo70‐F2 and F3 totally abrogated Pii immune receptor‐dependent resistance, but had no effect on Pia‐ and Pik‐dependent resistance. Knockdown levels of OsExo70‐F3 but not OsExo70‐F2 correlated with reduction of Pii function, suggesting that OsExo70‐F3 is specifically involved in Pii‐dependent resistance. Under our current experimental conditions, over‐expression of AVR‐Pii or knockdown of OsExo70‐F2 and ‐F3 genes in rice did not affect the virulence of compatible isolates of M. oryzae. AVR‐Pii interaction with OsExo70‐F3 appears to play a crucial role in immunity triggered by Pii, suggesting a role for OsExo70 as a decoy or helper in Pii/AVR‐Pii interactions. 相似文献
8.
Ru Zhang Noriyoshi Isozumi Masashi Mori Ryuta Okuta Suthitar Singkaravanit-Ogawa Tomohiro Imamura Jun-Ichi Kurita Pamela Gan Ken Shirasu Shinya Ohki Yoshitaka Takano 《The Journal of biological chemistry》2021,297(6)
Fungal plant pathogens secrete virulence-related proteins, called effectors, to establish host infection; however, the details are not fully understood yet. Functional screening of effector candidates using Agrobacterium-mediated transient expression assay in Nicotiana benthamiana identified two virulence-related effectors, named SIB1 and SIB2 (Suppression of Immunity in N. benthamiana), of an anthracnose fungus Colletotrichum orbiculare, which infects both cucurbits and N. benthamiana. The Agrobacterium-mediated transient expression of SIB1 or SIB2 increased the susceptibility of N. benthamiana to C. orbiculare, which suggested these effectors can suppress immune responses in N. benthamiana. The presence of SIB1 and SIB2 homologs was found to be limited to the genus Colletotrichum. SIB1 suppressed both (i) the generation of reactive oxygen species triggered by two different pathogen-associated molecular patterns, chitin and flg22, and (ii) the cell death response triggered by the Phytophthora infestans INF1 elicitin in N. benthamiana. We determined the NMR-based structure of SIB1 to obtain its structural insights. The three-dimensional structure of SIB1 comprises five β-strands, each containing three disulfide bonds. The overall conformation was found to be a cylindrical shape, such as the well-known antiparallel β-barrel structure. However, the β-strands were found to display a unique topology, one pair of these β-strands formed a parallel β-sheet. These results suggest that the effector SIB1 present in Colletotrichum fungi has unique structural features and can suppress pathogen-associated molecular pattern–triggered immunity in N. benthamiana. 相似文献
9.
10.
Mulberry (Morus alba) is an important crop tree involved in sericulture and pharmaceuticals. To further understand the development and the environmental adaptability mechanism of mulberry, a cDNA of the gene MaACO1 encoding 1-aminocyclopropane-1-carboxylate oxidase was isolated from mulberry. This was used to investigate stress-responsive expression in mulberry. Developmental expression of ACC oxidase in mulberry leaves and spatial expression in mulberry flowers were also investigated. Damage and low-temperature treatment promoted the expression of MaACO1 in mulberry. In leaves, expression of the MaACO1 gene increased in cotyledons and the lowest leaves with leaf development, but showed reduced levels in emerging leaves. In flowers, the pollinated stigma showed the highest expression level, followed by the unpollinated stigma, ovary, and immature flowers. These results suggest that high MaACO1 expression may be predominantly associated with tissue aging or senescence in mulberry. 相似文献
11.
12.
Biao Gu Wenxin Gao Zeqi Liu Guangda Shao Qin Peng Yinyu Mu Qinhu Wang Hua Zhao Jianqiang Miao Xili Liu 《Molecular Plant Pathology》2023,24(4):317-330
As a destructive plant pathogen, Phytophthora infestans secretes diverse host-entering RxLR effectors to facilitate infection. One critical RxLR effector, PiAvr3b, not only induces effector-triggered immunity (ETI), which is associated with the potato resistance protein StR3b, but also suppresses pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). To date, the molecular basis underlying such dual activities remains unknown. Based on phylogenetic analysis of global P. infestans isolates, we found two PiAvr3b isoforms that differ by three amino acids. Despite this sequence variation, the two isoforms retain the same properties in activating the StR3b-mediated hypersensitive response (HR) and inhibiting necrosis induced by three PAMPs (PiNpp, PiINF1, and PsXeg1) and an RxLR effector (Pi10232). Using a combined mutagenesis approach, we found that the dual activities of PiAvr3b were tightly linked and determined by 88 amino acids at the C-terminus. We further determined that either the W60 or the E134 residue of PiAvr3b was essential for triggering StR3b-associated HR and inhibiting PiNpp- and Pi10232-associated necrosis, while the S99 residue partially contributed to PTI suppression. Additionally, nuclear localization of PiAvr3b was required to stimulate HR and suppress PTI, but not to inhibit Pi10232-associated cell death. Our study revealed that PiAvr3b suppresses the plant immune response at different subcellular locations and provides an example in which a single amino acid of an RxLR effector links ETI induction and cell death suppression. 相似文献
13.
【目的】galectin-1是凝集素的一种,广泛存在于各种生物体内,在生长发育、免疫调节方面起重要作用。本研究克隆和表达了松材线虫的galectin-1蛋白,并分析了各个龄期的表达量。【方法】设计引物,扩增松材线虫的galectin-1基因,使用双酶切的方法连接p ET-28a载体和目的基因,转化到大肠杆菌DH5α感受态细胞,筛选阳性克隆;在不同温度下,用不同浓度的异丙基-β-D-硫代半乳糖苷(IPTG)诱导表达,Western blot检验蛋白表达情况;采用RT-PCR技术检验松材线虫各个龄期galectin-1基因的表达情况。【结果】由SMART和Predict Protein软件分析可知,该蛋白有2个结构域,并且主要由无规卷曲和β折叠构成;生物学信息分析显示,松材线虫的galectin-1与小卷蛾斯氏线虫的相似性更高;与日本血吸虫相比,线虫能很好地聚集在一个分支上。Western blot检测纯化蛋白大小与查询所得蛋白分子质量一致。RT-q PCR结果显示,以繁殖型2龄松材线虫(L_2)为对照,galectin-1基因在繁殖型3龄(L_3)、繁殖型4龄(L_4)、扩散型3龄(L_(Ⅲ))和扩散型4龄(L_(Ⅳ))松材线虫中的表达量高,尤其是在LⅢ中的表达量最高;雌雄成虫没有显著性差异。【结论】松材线虫的galectin-1基因在p ET-28a原核表达系统中呈可溶性表达,在不同龄期的表达量有差异。本研究为进一步研究松材线虫的galectin-1基因奠定了基础,为松材线虫的防治提供了新的方向。 相似文献
14.
SAD1, an RNA polymerase I subunit A34.5 of rice,interacts with Mediator and controls various aspects of plant development 下载免费PDF全文
Weiqiang Li Akiko Yoshida Megumu Takahashi Masahiko Maekawa Mikiko Kojima Hitoshi Sakakibara Junko Kyozuka 《The Plant journal : for cell and molecular biology》2015,81(2):282-291
15.
Tomotsune D Takihara Y Berger J Duhl D Joo S Kyba M Shirai M Ohta H Matsuda Y Honda BM Simon J Shimada K Brock HW Randazzo F 《Differentiation; research in biological diversity》1999,65(4):229-239
The Polycomb group of (PcG) genes were originally described in Drosophila, but many PcG genes have mammalian homologs. Genetic studies in flies and mice show that mutations in PcG genes cause posterior transformations caused by failure to maintain repression of homeotic loci, suggesting that PcG proteins have conserved functions. The Drosophila gene Sex comb on midleg (Scm) encodes an unusual PcG protein that shares motifs with the PcG protein polyhomeotic, and with a Drosophila tumor suppressor, lethal(3)malignant brain tumor (l(3)mbt). Expressed sequence tag (EST) databases were searched to recover putative mammalian Scm homologs, which were used to screen murine cDNA libraries. The recovered cDNA encodes two mbt repeats and the SPM domain that characterize Scm, but lacks the cysteine clusters and the serine/threonine-rich region found at the amino terminus of Scm. Accordingly, we have named the gene Sex comb on midleg homolog 1 (Scmh1). Like their Drosophila counterparts, Scmh1 and the mammalian polyhomeotic homolog RAE28/mph1 interact in vitro via their SPM domains. We analyzed the expression of Scmh1 and rae28/mph1 using northern analysis of embryos and adult tissues, and in situ hybridization to embryos. The expression of Scmh1 and rae28/mph1 is well correlated in most tissues of embryos. However, in adults, Scmh1 expression was detected in most tissues, whereas mph1/rae28 expression was restricted to the gonads. Scmh1 is strongly induced by retinoic acid in F9 and P19 embryonal carcinoma cells. Scmh1 maps to 4D1-D2.1 in mice. These data suggest that Scmh1 will have an important role in regulation of homeotic genes in embryogenesis and that the interaction with RAE28/mph1 is important in vivo. 相似文献
16.
Antoine K Prosperi MT Ferbus D Boule C Goubin G 《Molecular and cellular biochemistry》2005,271(1-2):215-223
The OZF (ZNF146) protein is a 33 kDa Kruppel protein, composed solely of 10 zinc finger motifs. It is overexpressed in the majority of pancreatic cancers and in more than 80% of colorectal cancers. We have identified OZF interacting factors with a yeast two-hybrid screen. Half of the positive clones characterized encoded UBC9, the E2 enzyme involved in the covalent conjugation of the small ubiquitin-like modifier 1 (SUMO-1). SUMO-1 is a 17 kDa migrating protein that is conjugated to several proteins and has been reported to exhibit multiple effects, including modulation of protein stability, subcellular localization, and gene expression. In HeLa cells transfected with OZF and SUMO-1 expression vectors, immunoblot revealed a major band migrating at 50 kDa and a minor band at 67 kDa, corresponding to the attachment to OZF of one and two SUMO-1 proteins, respectively. The relative amount of the sumoylated proteins increased following transfection with a UBC9 expression vector. The presence of the sumoylated form in HeLa cells solely transfected by OZF indicates the physiological activity of the endogenous SUMO-1 conjugation pathway. Using deletion mutants, we showed that two SUMO-1 modification sites are located on the sixth zinc finger. Mutation of two lysine residues greatly reduced the amount of the sumoylated form of OZF though their surrounding sequences differ from the consensus sequence reported for most proteins modified by SUMO-1 conjugation. Despite the presence of the sixth zinc finger, an OZF mutant containing zinc fingers 1–6 was not modified by SUMO-1 and failed to interact with UBC9. Addition of zinc finger 7 restored SUMO-1 modification and UBC9 interaction and provides evidence that a region downstream of the target lysines is required for interaction with UBC9, in order to achieve SUMO-1 modification. This is the first report of in vivo conjugation of a SUMO-1 protein to a Kruppel zinc finger motif. (Mol Cell Biochem 271: 215–223, 2005) 相似文献
17.
Development of the LYVE‐1 gene with an acidic‐amino‐acid‐rich (AAAR) domain in evolution is associated with acquisition of lymph nodes and efficient adaptive immunity 下载免费PDF全文
Shuan Shian Huang Ya‐Wen Li Jen‐Leih Wu Frank E. Johnson Jung San Huang 《Journal of cellular physiology》2018,233(4):2681-2692
18.
Jianxun Wang Shang Liu Peng Ren Fengguo Jia Feng Kang Ruolin Wang Renzheng Xue Xia Yan Lili Huang 《Molecular Plant Pathology》2023,24(5):436-451
Previously, we reported a rare actinomycete Saccharothrix yanglingensis Hhs.015 with strong biocontrol ability, which can colonize plant tissues and induce resistance, but the key elicitor and immune mechanisms were unclear. In this study, a novel protein elicitor screened from the genome of Hhs.015, PeSy1 (protein elicitor of S. yanglingensis 1), could induce a strong hypersensitive response (HR) and resistance in plants. The PeSy1 gene encodes an 11 kDa protein with 109 amino acids that is conserved in Saccharothrix species. PeSy1-His recombinant protein induced early defence events such as a cellular reactive oxygen species burst, callose deposition, and the activation of defence hormone signalling pathways, which enhanced Nicotiana benthamiana resistance to Sclerotinia sclerotiorum and Phytophthora capsici, and Solanum lycopersicum resistance to Pseudomonas syringae pv. tomato DC3000. Through pull-down and mass spectrometry, candidate proteins that interacted with PeSy1 were obtained from N. benthamiana. We confirmed the interaction between receptor-like cytoplasmic kinase RSy1 (Response to PeSy1) and PeSy1 using co-immunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. PeSy1 treatment promoted up-regulation of marker genes in pattern-triggered immunity. The cell death it elicited was dependent on the co-receptors NbBAK1 and NbSOBIR1, suggesting that PeSy1 acts as a microbe-associated molecular pattern from Hhs.015. Additionally, RSy1 positively regulated PeSy1-induced plants resistant to S. sclerotiorum. In conclusion, our results demonstrated a novel receptor-like cytoplasmic kinase in the plant perception of microbe-associated molecular patterns, and the potential of PeSy1 in induced resistance provided a new strategy for biological control of actinomycetes in agricultural diseases. 相似文献
19.
Gomi K Sasaki A Itoh H Ueguchi-Tanaka M Ashikari M Kitano H Matsuoka M 《The Plant journal : for cell and molecular biology》2004,37(4):626-634
The phytohormone gibberellin (GA) controls growth and development in plants. Previously, we identified a rice F-box protein, gibberellin-insensitive dwarf2 (GID2), which is essential for GA-mediated DELLA protein degradation. In this study, we analyzed the biological and molecular biological properties of GID2. Expression of GID2 preferentially occurred in rice organs actively synthesizing GA. Domain analysis of GID2 revealed that the C-terminal regions were essential for the GID2 function, but not the N-terminal region. Yeast two-hybrid assay and immunoprecipitation experiments demonstrated that GID2 is a component of the SCF complex through an interaction with a rice ASK1 homolog, OsSkp15. Furthermore, an in vitro pull-down assay revealed that GID2 specifically interacted with the phosphorylated Slender Rice 1 (SLR1). Taken these results together, we conclude that the phosphorylated SLR1 is caught by the SCFGID2 complex through an interacting affinity between GID2 and phosphorylated SLR1, triggering the ubiquitin-mediated degradation of SLR1. 相似文献
20.
BmK ITa1 is an insect-specific neurotoxin from the Chinese scorpion Buthus martensi Karsch (Bmk). We succeeded in obtaining biologically active recombinant BmK ITa1 protein by simultaneous expression in insect
cells of BmK ITa1 cDNA with an amidating enzyme expressed by the rat peptidylglycine α-amidating monooxygenase (PAM) gene.
We investigated the insecticidal efficacy of recombinant BmK ITa1/W (without coexpression of PAM), and of BmK ITa1/A (with
coexpression of PAM) in 5th instar Bombyx mori, by injecting these recombinant toxins into larvae. The lethal time for 50% of larvae (LT50) was 9 h for BmK ITa1/A and 17 h for BmK ITa1/W. At 19 h after injection all of the larvae exposed to BmK ITa1/A had been
killed, whereas only half of the larvae exposed to BmK ITa1/W had been killed. These results show that the simultaneous expression
of an amidating enzyme can result in apparently higher insecticidal activity of BmK ITa1. 相似文献