首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytosolic glutamine synthetase (GS1) plays a central role in nitrogen (N) metabolism. The importance of GS1 in N remobilization during reproductive growth has been reported in cereal species but attempts to improve N utilization efficiency (NUE) by overexpressing GS1 have yielded inconsistent results. Here, we demonstrate that transformation of barley (Hordeum vulgare L.) plants using a cisgenic strategy to express an extra copy of native HvGS1‐1 lead to increased HvGS1.1 expression and GS1 enzyme activity. GS1 overexpressing lines exhibited higher grain yields and NUE than wild‐type plants when grown under three different N supplies and two levels of atmospheric CO2. In contrast with the wild‐type, the grain protein concentration in the GS1 overexpressing lines did not decline when plants were exposed to elevated (800–900 μL/L) atmospheric CO2. We conclude that an increase in GS1 activity obtained through cisgenic overexpression of HvGS1‐1 can improve grain yield and NUE in barley. The extra capacity for N assimilation obtained by GS1 overexpression may also provide a means to prevent declining grain protein levels under elevated atmospheric CO2.  相似文献   

2.
A calcium-sensitive, phospholipid-dependent protein kinase (protein kinase C) and its three isozymes were purified from rat heart cytosolic fractions utilizing a rapid purification method. The purified protein kinase C enzyme showed a single polypeptide band of 80 KDa on SDS-polyacrylamide gel electrophoresis, and was totally dependent on the presence of Ca2+ and phospholipid for activity. Diacylglycerol was also found to stimulate enzymatic activity. Autophosphorylation of the purified PKC showed an 80 KDa polypeptide. The identity of the purified protein was also verified with monoclonal antibodies specific for PKC. Further fractionation of the purified PKC on a hydroxylapatite column yielded three distinct peaks of enzyme activity, corresponding to type I, II and III based on similar chromatographic behaviour as the rat brain enzyme. All three forms were entirely Ca2– and phosphatidylserine dependent. Type II was found to be the most abundant. Type I was found to be highly unstable. PKC activity studies demonstrate that types II and III isozymic forms are different with respect to their sensitivity to Ca2+.Abbreviations PKC Protein Kinase C - SDS Sodium Dodecyl Sulfate - PAGE Polyacrylamide Gel Electrophoresis - Km Michaelis constant - NBT Nitro-Blue Tetrazolium - BCIP 5-Bromo-4-Chloro-3-Indolyl Phosphate  相似文献   

3.
Gisela Mäck 《Planta》1995,196(2):231-238
One cytosolic glutamine synthetase (GS, EC 6.3.1.2) isoform (GS 1a) was active in the germinating seeds of barley (Hordeum vulgare L.). A second cytosolic GS isoform (GS 1b) was separated from the leaves as well as the roots of 10-d-old seedlings. The chloroplastic isoform (GS 2) was present and active only in the leaves. The three GS isoforms were active in N-supplied (NH+ 4 or NO 3 ) as well as in N-free-grown seedlings. This indicates (i) that a supply of nitrogen to the germinating seeds was not necessary for the induction of the GS isoforms and (ii) that no nitrogen-specific isoforms appeared during growth of seedlings with different nitrogen sources. The activity of GS, however, depended on the seedlings' nitrogen source: the specific activity was much higher in the leaves and much lower in the roots of NH+ 4-grown barley than in the respective organs of NO 3 -fed or N free-grown plants. With increasing concentrations of NH+ 4 (supplied hydroponically during growth), the specific activity of GS 1b increased in the leaves, but decreased in the roots. The activity of GS 2 (leaf) also increased with increasing NH+ 4 supply, whereas GS 1a activity (leaf and root) was not affected. The changes in the activities of GS 1b and GS 2 were correlated with changes in the subunit compositions of the active holoenzymes: growth at increased levels of external NH+ 4 resulted in an increased abundance of one of the four GS subunits, and of two of the five GS 1b subunits in the leaves. In the roots, however, the abundance of these two GS 1b subunits was decreased under the same growth conditions, indicating an organ-specific difference either in the expression of the genes coding for the respective GS 1b subunits or in the assembly of the GS 1b holoenzymes. Furthermore, growth at different levels of NH+ 4 resulted in changes in the substrate affinities of the isoforms GS 1b (root and leaf) and GS 2 (leaf), presumably due to the changes in the subunit compositions of the active holoenzymes.Abbreviations FPLC fast protein liquid chromatography - GHA -glutamyl hydroxamate - GS glutamine synthetase Dr. Roger Wallsgrove's (Rothamsted Experimental Station, Harpenden, UK) generous gift of GS antiserum is greatly appreciated.  相似文献   

4.
5.
Atmospheric CO2 levels are expected to exceed 700 mol mol–1 by the end of the 21st century. The influence of increased CO2 concentration on crop plants is of major concern. This study investigated water- and nitrogen-use efficiency (WUE and NUE, respectively, were defined by the amount of biomass accumulated per unit water or N uptake) of spring wheat (Triticum aestivumL.) grown under two atmospheric CO2 concentrations (350 and 700 mol mol–1), two soil moisture treatments (well-watered and drought) and five nitrogen amendment treatments. Results showed that enriched CO2 concentration increased canopy WUE, and more N supply led to higher WUE under the increased CO2. Canopy WUE was significantly lower in well-watered treatments than in drought treatment, but increased with the increased N supply. Elevated CO2 reduced the apparent recovery fraction of applied N by the plant root system (Nr, defined as the ratio of the increased N uptake to N applied), but increased the NUE and agronomic N efficiency (NAE, defined as the ratio of the increased biomass to N applied). Water limitation and high N application reduced the Nr, NUE and NAE, indicating a poor N efficiency. In addition, there was a close relationship between the root mass ratio and NUE. Canopy WUE was negatively related to the root mass ratio and NUE. Our results indicated that CO2 enrichment enhanced WUE more at high N application, but increased NUE more when N application was less.  相似文献   

6.
Anthranilate synthase (AS) is a key enzyme in the biosynthesis of various indole compounds including tryptophan. AS consists of two subunits, and , and converts chorismate to anthranilate. Two or more AS -subunit genes have been identified and characterized in several land plants. Although subunits of AS induced by elicitation have been suggested to play significant roles in secondary metabolism, the biochemical and precise functional properties of individual AS isozymes have remained unclear. We have previously identified and characterized two AS -subunit genes (OASA1 and OASA2) in rice (Oryza sativa). To provide further insight into the enzymatic functions of AS isozymes in rice, we have now isolated rice cDNAs encoding the AS subunits OASB1 and OASB2 and reconstituted AS isozymes in vitro with the wheat germ cell-free system for protein expression. Both OASB subunits conferred glutamine-dependent AS activity on either OASA1 or OASA2, indicating the absence of a marked functional difference between the two subunits in terms of amidotransferase activity. Furthermore, both OASA subunits required assembly with a subunit to achieve maximal enzymatic activity even with NH 4 + as the amino donor. The V max and K i for tryptophan of the OASA1-OASB1 isozyme with glutamine as the amino donor, however, were 2.4 and 7.5 times, respectively, those of OASA2-OASB1, suggesting that AS isozymes containing OASA1 possess a higher activity and are less sensitive to feedback inhibition than those containing OASA2. Our biochemical characterization of reconstituted AS isozymes has thus revealed distinct functional properties of these isozymes in rice.  相似文献   

7.
To expand our knowledge about the relationship of nitrogen use efficiency and glutamine synthetase (GS) activity in the mangrove plant, a cytosolic GS gene from Avicennia marina has been heterologously expressed in and purified from Escherichia coli. Synthesis of the mangrove GS enzyme in E. coli was demonstrated by functional genetic complementation of a GS deficient mutant. The subunit molecular mass of GSI was ~40 kDa. Optimal conditions for biosynthetic activity were found to be 35 °C at pH 7.5. The Mg2+-dependent biosynthetic activity was strongly inhibited by Ni2+, Zn2+, and Al3+, whereas was enhanced by Co2+. The apparent K m values of AmGLN1 for the substrates in the biosynthetic assay were 3.15 mM for glutamate, and 2.54 mM for ATP, 2.80 mM for NH4 + respectively. The low affinity kinetics of AmGLN1 apparently participates in glutamine synthesis under the ammonium excess conditions.  相似文献   

8.
9.
10.
11.
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.  相似文献   

12.
This short review outlines the central role of glutamine synthetase (GS) in plant nitrogen metabolism and discusses some possibilities for crop improvement. GS functions as the major assimilatory enzyme for ammonia produced from N fixation, and nitrate or ammonia nutrition. It also reassimilates ammonia released as a result of photorespiration and the breakdown of proteins and nitrogen transport compounds. GS is distributed in different subcellular locations (chloroplast and cytoplasm) and in different tissues and organs. This distribution probably changes as a function of the development of the tissue, for example, GS1 appears to play a key role in leaf senescence. The enzyme is the product of multiple genes with complex promoters that ensure the expression of the genes in an organ- and tissue-specific manner and in response to a number of environmental variables affecting the nutritional status of the cell. GS activity is also regulated post-translationally in a manner that involves 14-3-3 proteins and phosphorylation. GS and plant nitrogen metabolism is best viewed as a complex matrix continually changing during the development cycle of plants. Along with GS, a number of other enzymes play key roles in maintaining the balance of carbon and nitrogen. It is proposed that one of these is glutamate dehydrogenase (GDH). There is considerable evidence for a GDH shunt to return the carbon in amino acids back into reactions of carbon metabolism and the tri-carboxylic acid cycle. Results with transgenic plants containing transferred GS genes suggest that there may be ways in which it is possible to improve the efficiency with which crop plants use nitrogen. Marker-assisted breeding may also bring about such improvements.  相似文献   

13.
14.
15.
A pilot-scale field experiment demonstrated that a one-time amendment of emulsified vegetable oil (EVO) reduced groundwater U(VI) concentrations for 1 year in a fast-flowing aquifer. However, little is known about how EVO amendment stimulates the functional gene composition, structure, and dynamics of groundwater microbial communities toward prolonged U(VI) reduction. In this study, we hypothesized that EVO amendment would shift the functional gene composition and structure of groundwater microbial communities and stimulate key functional genes/groups involved in EVO biodegradation and reduction of electron acceptors in the aquifer. To test these hypotheses, groundwater microbial communities after EVO amendment were analyzed using a comprehensive functional gene microarray. Our results showed that EVO amendment stimulated sequential shifts in the functional composition and structure of groundwater microbial communities. Particularly, the relative abundance of key functional genes/groups involved in EVO biodegradation and the reduction of NO3, Mn(IV), Fe(III), U(VI), and SO42− significantly increased, especially during the active U(VI) reduction period. The relative abundance for some of these key functional genes/groups remained elevated over 9 months. Montel tests suggested that the dynamics in the abundance, composition, and structure of these key functional genes/groups were significantly correlated with groundwater concentrations of acetate, NO3, Mn(II), Fe(II), U(VI), and SO42−. Our results suggest that EVO amendment stimulated dynamic succession of key functional microbial communities. This study improves our understanding of the composition, structure, and function changes needed for groundwater microbial communities to sustain a long-term U(VI) reduction.  相似文献   

16.
Pyridoxal kinase (PLK; EC 2.7.1.35) is a key enzyme for vitamin B6 metabolism in animals. It catalyzes the ATP-dependent phosphorylation of pyridoxal, generating pyridoxal 5′-phosphate, an important cofactor for many enzymatic reactions. Bombyx mori PLK (BmPLK) is 10 or more residues shorter than mammalian PLKs, and some amino acid residues conserved in the PLKs from mammals are not maintained in the protein. Multiple sequence alignment suggested that amino acid residues Thr47, Ile54, Arg88, Asn121 and Glu230 might play important roles in BmPLK. In this study, we used a site-directed specific mutagenesis approach to determine the functional significance of these particular amino acid residues in BmPLK. Our results demonstrated that the mutation of Asn121 to Glu did not affect the catalytic function of BmPLK. The corresponding site-directed mutants of Thr47 to Asn, Ile54 to Phe, and Arg88 to Ile displayed a decreased catalytic efficiency and an elevated Km value for substrate relative to the wild-type value, and no enzyme activity could be detected in mutant of Trp230 to Glu. Circular dichroism analysis revealed that the mutation of Trp230 to Glu resulted in mis-folding of the protein. Our results provided direct evidence that residue Trp230 is crucial to maintain the structural and functional integrity of BmPLK. This study will add to the existing understanding of the characteristic of structure and function of BmPLK.  相似文献   

17.
18.
M. Höpfner  G. Ochs  A. Wild 《Planta》1990,181(2):155-161
Studies on the glutamine synthetases (GS, EC 6.3.1.2) of green (GS2) and etiolated leaves (GSet) ofSinapis alba L. (cv. Steinacher) revealed striking similarities between the respective enzyme proteins. The enzymes showed corresponding chromatographic properties, both on dimethylaminoethyl-Sephacel and on hydroxylapatite columns. The purified GS proteins were also identical with regard to the molecular weight of their subunits. Isoelectrofocusing of pure GSet yielded two distinct polypeptide bands in the pH 5.6 region of the gels. This pattern corresponded to the two strong bands of GS2. Two charge variants of GS polypeptides could be detected by Western-blot analysis of the soluble protein of green leaves using antibodies against mustard GS2. In immunoprecipitation experiments, the holoenzymes of GS2 and GSet were recognized with identical affinities by this antiserum. We conclude that strong similarities exist between the proteins of the GS enzymes in green and etiolated leaves of mustard. Most probably only one GS form, namely the plastidic enzyme, can be found in the epigeal organs ofSinapis. The polypeptides of the GS2 subunits showed no differences in the hydrophobicity of the polypeptide chains. Neither glucosyl nor mannosyl residues could be detected. Dedicated to Professor Dr. H. Mohr on the occasion of his 60th birthday  相似文献   

19.
Microbacterium sp. 4N2-2, isolated from a wastewater treatment plant, converts the antibacterial fluoroquinolone norfloxacin to N-acetylnorfloxacin and three other metabolites. Because N-acetylation results in loss of antibacterial activity, identification of the enzyme responsible is important for understanding fluoroquinolone resistance. The enzyme was identified as glutamine synthetase (GS); N-acetylnorfloxacin was produced only under conditions associated with GS expression. The GS gene (glnA) was cloned, and the protein (53 kDa) was heterologously expressed and isolated. Optimal conditions and biochemical properties (Km and Vmax) of purified GS were characterized; the purified enzyme was inhibited by Mn2+, Mg2+, ATP, and ADP. The contribution of GS to norfloxacin resistance was shown by using a norfloxacin-sensitive Escherichia coli strain carrying glnA derived from Microbacterium sp. 4N2-2. The GS of Microbacterium sp. 4N2-2 was shown to act as an N-acetyltransferase for norfloxacin, which produced low-level norfloxacin resistance. Structural and docking analysis identified potential binding sites for norfloxacin at the ADP binding site and for acetyl coenzyme A (acetyl-CoA) at a cleft in GS. The results suggest that environmental bacteria whose enzymes modify fluoroquinolones may be able to survive in the presence of low fluoroquinolone concentrations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号