首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Induction of recombination between rye chromosome 1RL and wheat chromosomes   总被引:2,自引:0,他引:2  
Summary The ph1b mutant in bread wheat has been used to induce homoeologous pairing and recombination between chromosome arm 1RL of cereal rye and wheat chromosome/s. A figure of 2.87% was estimated for the maximal frequency of recombination between a rye glutelin locus tightly linked to the centromere and the heterochromatic telomere on the long arm of rye chromosome 1R in the progeny of ph1b homozygotes. This equates to a gametic recombination frequency of 1.44%. This is the first substantiated genetic evidence for homoeologous recombination between wheat and rye chromosomes. No recombinants were confirmed in control populations heterozygous for ph1b. The ph1b mutant was also observed to generate recombination between wheat homoeologues.  相似文献   

2.
Wheat-rye chromosome associations at metaphase I studied by Naranjo and Fernández-Rueda (1991) in ph1b ABDR hybrids have been reanalysed to establish the frequency of pairing between individual chromosomes of wheat and rye. Wheat chromosomes, except for 2A and 2D, and their arms were identified by C-banding. Diagnostic C-bands and other cytological markers such as telocentrics or translocations were used to identify each one of the rye chromosomes and their arms. Both the amount of telomeric C-heterochromatin and the structure of the rye chromosomes relative to wheat affected the level of wheatrye pairing. The degree to which rye chromosomes paired with their wheat homoeologues varied with each of the three wheat genomes; in most groups, the B-R association was more frequent than the A-R or D-R associations. Recombination between arms 1RL and 2RL and their homoeologues of wheat possessing a different telomeric C-banding pattern was detected and quantified at anaphase I. The frequency of recombinant chromosomes obtained supports the premise that recombination between wheat and rye chromosomes may be estimated from wheat-rye pairing.  相似文献   

3.
Because fresh initiations of synapsis must occur for homologous synapsis of internal heterozygously inverted chromosome segments, attention has been directed at homologous synapsis and crossing over in overlapping paracentric inversions in the long arm of chromosome 1 of maize. In an earlier study with a relatively short inversion (where double crossovers within the inversion were rare), a recombination nodule (RN) was generally found at pachytene in reverse paired (homologously synapsed) inverted regions. Crossover frequency within the inversion, which could be independently estimated from analysis of bridge and fragment frequency at anaphase I and II, closely corresponded to crossover frequency estimated from observed RN frequency in pachytene inversion loops. These findings were consistent with the interpretation that establishment of homologous synapsis in this case is generally coupled to crossing over. This coupling suggests that there is very early commitment to the form of resolution of recombination intermediates that results in reciprocal recombination events instead of conversion only or other noncrossover events. This study examines another, larger paracentric inversion in the long arm of chromosome 1 that completely overlaps the first inversion. It is sufficiently longer than the first inversion that double crossover events are found within it with substantial frequency and interference considerations are feasible. This study confers additional insight into the interrelationships of synapsis and crossing over and the probable sequence in which the various involved processes usually occur. It raises the strong possibility that crossovers can be initiated during the alignment phase that precedes synapsis.  相似文献   

4.
Induction of small-segment-translocation between wheat and rye chromosomes   总被引:19,自引:0,他引:19  
A new approach to produce wheat-rye translocation, based on the genetic instability caused by monosomic addition of rye chromosome in wheat, is described. 1 283 plants from the selfed progenies of monosomic addition lines with single chromosome of inbred rye line R12 and complete chromosome complement of wheat cultivar Mianyang 11 were cytologically analyzed on a plant-by-plant basis by the improved C-banding technique. 63 of the plants, with 2n = 42, were found containing wheat-rye translocation or substitution, with a frequency of 4. 91% . Compared with the wheat parent, other 32 plants with 2n = 42 exhibited obvious phenotypic variation, but their com-ponent of rye chromosome could not be detected using the C-banding technique. In situ hybridization with a biotin-la-beled DNA probe was used to detect rye chromatin and to determine the insertion sites of rye segments in the wheat chromosomes. In 20 out of the 32 variant wheat plants, small segments of rye chromosomes were found being inserted into dif  相似文献   

5.
In the genus Drosophila, variation in recombination rates has been found within and between species. Genetic variation for both cis and trans‐acting factors has been shown to affect recombination rates within species, but little is known about the genetic factors that affect differences between species. Here, we estimate rates of crossing over for seven segments that tile across the euchromatic length of the X chromosome in the genetic backgrounds of three closely related Drosophila species. We first generated a set of Drosophila mauritiana lines each having two semidominant visible markers on the X chromosome and then introgressed these doubly marked segments into the genetic backgrounds of its sibling species, Drosophila simulans and Drosophila sechellia. Using these 21 lines (seven segments, three genetic backgrounds), we tested whether recombination rates within the doubly marked intervals differed depending on genetic background. We find significant heterogeneity among intervals and among species backgrounds. Our results suggest that a combination of both cis and trans‐acting factors have evolved among the three D. simulans clade species and interact to affect recombination rate.  相似文献   

6.
Triticum aestivum is an allohexaploid wheat (AABBDD) that shows diploid-like behaviour at metaphase-I. This behaviour is influenced by the action of several loci, Ph1 and Ph2 being the main loci involved. To study the effect of these two loci on chromosome pairing in T. aestivum we have analysed the synaptic pattern in fully traced spread nuclei at mid- and late-zygotene, and at pachytene, of three different genotypes of cv Chinese Spring: standard line, ph1b and ph2b mutants. The analysis of the synaptic progression showed that only a few nuclei accomplish synapsis in the ph2b genotype, whereas most nuclei completed synapsis in the standard and ph1b genotypes. This result indicates that the Ph2 locus affects synaptic progression. The number of synaptonemal complex (SC) bivalents and of the different SC multivalent associations were determined in each nucleus. The mean number of lateral elements involved in SC multivalent associations (LEm) at mid- zygotene was relatively high and showed similar values in the three genotypes. These values decreased progressively between mid-zygotene and pachytene in the genotypes with the Ph1 locus because of the transformation of multivalents into bivalents. In the ph1b genotype, this value only decreased between late-zygotene and pachytene. Therefore, multivalent correction was more efficient in the presence than in the absence of the Ph1 locus.It is concluded that the Ph1 and Ph2 loci bring about diploidization of allohexaploid wheat via a different mechanism. Received: 31 July 2000 / Accepted: 15 November 2000  相似文献   

7.
Hexaploid wheat possesses 42 chromosomes derived from its three ancestral genomes. The 21 pairs of chromosomes can be further divided into seven groups of six chromosomes (one chromosome pair being derived from each of the three ancestral genomes), based on the similarity of their gene order. Previous studies have revealed that, during anther development, the chromosomes associate in 21 pairs via their centromeres. The present study reveals that, as a prelude to meiosis, these 21 chromosome pairs in hexaploid (and tetraploid) wheat associate via the centromeres into seven groups as the telomeres begin to cluster. This results in the association of multiple chromosomes, which then need to be resolved as meiosis progresses. The formation of the seven chromosome clusters now explains the occasional occurrence of remnants of multiple associations, which have been reported at later stages of meiosis in hexaploid (and tetraploid) wheat. Importantly, the chromosomes have the opportunity to be resorted via these multiple interactions. As meiosis progresses, such interactions are resolved through the action of loci such as Ph1, leaving chromosomes as homologous pairs.  相似文献   

8.
The paper presents the analysis of the frequency, density, and distribution of recombination sites in the male meiosis of the domestic cat (Felis silvestris catus). The study was carried out using immunofluorescent staining of synaptonemal complex (SC) proteins, centromeric proteins and mismatch repair protein MLH1, a reliable marker of crossingover sites. We mapped 2633 sites of crossing over in 1098 individual autosomes. Based on these data, we estimated the total length of the genetic map of the domestic cat to be 2176 centimorgans. Positive correlation between the length of SC and the number of recombination sites common for mammalians was also found in the domestic cat. It was shown that this species was characterized by the highest density of recombination and the lowest interference in mammals.  相似文献   

9.
The recombinational environment influences patterns of molecular evolution through the effects of Hill-Robertson interference. Here, we examine genome-wide patterns of gene expression with respect to recombinational environment in Drosophila melanogaster. We find that regions of the genome lacking crossing over exhibit elevated levels of expression, and this is most pronounced for genes on the entirely non-crossing over fourth chromosome. We find no evidence for differences in the patterns of gene expression between regions of high, intermediate and low crossover frequencies. These results suggest that, in the absence of crossing over, selection to maintain control of expression may be compromised, perhaps due to the accumulation of deleterious mutations in regulatory regions. Alternatively, higher gene expression may be evolving to compensate for defective protein products or reduced translational efficiency.  相似文献   

10.
Summary Genetic maps of wheat chromosome 4A and rye chromosome arm 5RL, and the chromosomal locations of 70 sets of isozyme and molecular homoeoloci have been used to further define the structure of wheat chromosomes 4A, 5A and 7B, and rye chromosomes 4R, 5R and 7R. We provide evidence, for the first time, which is consistent with the presence of an interstitial segment on 4AL originating from 5AL, and of a segment originally from 5RL on 7RS. The evolutionary origins of the present chromosomes are discussed.  相似文献   

11.
Summary In five genetically different inbred lines of rye and in the seven Chinese Spring/Imperial wheatrye addition lines, chiasma distribution in rye chromosomes was studied with respect to the amount and position of constitutive heterochromatin (Giemsa C-bands). In all inbred lines, rye chromosomes with one primary terminal band were more frequently found as univalents than those with primary bands on both telomeres. These chromosomes were most probably 5R and/or 6R. In the addition lines a highly significant reduction in the number of arms bound by chiasmata was found for rye chromosomes 5R and 6R. Because of the similar chiasma distribution in the inbred lines and in the rye chromosomes of the addition lines, no effect of the wheat genome on the number of chiasmata in the rye chromosomes can be ascertained. However, a relationship between chiasma frequency and chromosome arm length seems to exist, since under reduced chiasma conditions the two shortest arms of the rye complement, those of chromosomes 5R and 6R, frequently fail to form a chiasma. No effect of the large blocks of constitutive heterochromatin in the telomeres of the rye chromosomes on the position of chiasmata within a bivalent could be established.This study was financially supported by the Deutsche Forschungsgemeinschaft  相似文献   

12.
The effect of telomere heterochromatin on metaphase I association of chromosome pair 1R of rye was analyzed in normal diploid plants of rye (2n=14) and in wheat-rye derivatives with the chromosome constitution (0–7)A(0–7)BRR (2n=20, 21 and 22). The C-banding pattern of 1R was variable between plants. In diploid rye the presence or absence of telomeric heterochromatin in 1R does not influence its meiotic pairing. However, in wheat-rye derivatives the presence of telomeric heterochromatin decreases chiasma frequency in the 1R bivalent. This cannot be attributed to interference of heterochromatin with chiasma terminalization. This effect of heterochromatin is most pronounced in heterozygous condition. In plants heterozygous for telomeric C-bands the reduction of pairing is stronger in the short arm than in the long arm of the 1R bivalent.  相似文献   

13.
Cakmak  I.  Derici  R.  Torun  B.  Tolay  I.  Braun  H.J.  Schlegel  R. 《Plant and Soil》1997,196(2):249-253
Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.  相似文献   

14.
Summary Chromosome pairing and chiasma frequency were studied in bread wheat euhaploids (2n = 3x = 21; ABD genomes) with and without the major pairing regulatorPh1. This constitutes the first report of chromosome pairing relationships among the A, B, and D genomes of wheat without the influence of an alien genome. AllPh1 euhaploids had very little pairing, with 0.62–1.05 rod bivalents per cell; ring bivalents were virtually absent and mean arm-binding frequency (c) values ranged from 0.050 to 0.086. In contrast, theph1b euhaploids had extensive homoeologous pairing, with chiasma frequency 7.5–11.6 times higher than that in thePh1 euhaploids. They had 0.53–1.16 trivalents, 1.53–1.74 ring bivalents, and 2.90–3.57 rod bivalents, withc from 0.580 to 0.629. N-banding of meiotic chromosomes showed strongly preferential pairing between chromosomes of the A and D genomes; 80% of the pairing was between these genomes, especially in the presence of theph1b allele. The application of mathematical models to unmarked chromosomes also supported a 21 genomic structure of theph1b euhaploids. Numerical modeling suggested that about 80% of the metaphase I association was between the two most related genomes in the presence ofph1b, but that pairing under Ph1 was considerably more random. The data demonstrate that the A and D genomes are much more closely related to each other than either is to B. These results may have phylogenetic significance and hence breeding implications.This paper is dedicated to the memory of the late Ernest R. SearsCooperative investigations of the USDA-Agricultural Research Service and the Utah Agricultural Experiment Station, Logan, UT 84322, USA. Approved as Journal Paper No. 3986  相似文献   

15.
16.
The position of telomeres, centromeres and subtelomeric heterochromatin (SH) has been studied by FISH in rye meiocytes. We compare the morphology of the signals from zygotene to telophase II mainly to determine differences in SH and telomere positions between plants with and without neocentromeres. Plants from two varieties were used: Paldang showing neocentromeres, and Puyo without neocentromeres but with two B chromosomes. In both varieties, at zygotene and pachytene the SH is observed forming clumps often including two or more bivalent ends. At diplotene the SH is stretched suggesting that it is close to the nuclear envelope. In these cases, the telomere signals are not stretched and lay behind the SH. Frequently, two or more bivalents are joined by conspicuous SH connections at diplotene strongly suggesting ectopic recombination. Probably as a result, differential distribution of the SH between recombinant homologues or the whole meiotic products is observed. From diplotene onwards, the large heterochromatic blocks cover the telomeres, the SH being the morphological end of the bivalents, both in plants with or without neocentromeres. The Bs are tightly associated only at the telomeric end of the long arm from diplotene to metaphase I. The high variability between homologous chromosomes and the frequent nonhomologous bindings of SH, strongly suggest that rye SH is in dynamic state and frequently changes in chromosome position during meiosis.  相似文献   

17.
The mismatch repair (MMR) family complexes Msh4-Msh5 and Mlh1-Mlh3 act with Exo1 and Sgs1-Top3-Rmi1 in a meiotic double strand break repair pathway that results in the asymmetric cleavage of double Holliday junctions (dHJ) to form crossovers. This review discusses how meiotic roles for Msh4-Msh5 and Mlh1-Mlh3 do not fit paradigms established for post-replicative MMR. We also outline models used to explain how these factors promote the formation of meiotic crossovers required for the accurate segregation of chromosome homologs during the Meiosis I division.  相似文献   

18.
Summary In an attempt to transfer genes for salt tolerance and other desirable traits from the diploid wheatgrasses, Thinopyrum bessarabicum (2n=2x=14; JJ genome) and Lophopyrum elongatum (2n=2x=14; EE genome), into durum wheat cv Langdon (2n=4x=28; AABB genomes), trigeneric hybrids with the genomic constitution ABJE were synthesized and cytologically characterized. C-banding analysis of somatic chromosomes of the A, B, J, and E genomes in the same cellular environment revealed distinct banding patterns; each of the 28 chromosomes could be identified. They differed in the total amount of constitutive heterochromatin. Total surface area and C-banded area of each chromosome were calculated. The B genome was the largest in size, followed by the J, A, and E genomes, and its chromosomes were also the most heavily banded. Only 25.8% of the total chromosome complement in 10 ABJE hybrids showed association, with mean arm-pairing frequency (c) values from 0.123 to 0.180 and chiasma frequencies from 3.36 to 5.02 per cell. The overall mean pairing was 0.004 ring IV + 0.046 chain IV + 0.236 III + 0.21 ring II + 2.95 rod II + 20.771. This is total pairing between chromosomes of different genomes, possibly between A and B, A and J, A and E, B and J, B and E, and J and E, in the presence of apparently functional pairing regulator Ph1. Because chromosome pairing in the presence of Ph1 seldom occurs between A and B, or between J and E, it was inferred that pairing between the wheat chromosomes and alien chromosomes occurred. The trigeneric hybrids with two genomes of wheat and one each of Thinopyrum and Lophopyrum should be useful in the production of cytogenetic stocks to facilitate the transfer of alien genes into wheat.  相似文献   

19.
Summary Several studies have indicated a noncorrespondence between genetic and physical distances in wheat chromosomes. To study the physical distribution of recombination, polymorphism for C-banding patterns was used to monitor recombination in 67 segments in 11 B-genome chromosome arms of Triticum turgidum. Recombination was absent in proximal regions of all chromosome arms; its frequency increased exponentially with distance from the centromere. A significant difference was observed between the distribution of recombination in physically short and physically long arms. In physically short arms, recombination was almost exclusively concentrated in distal segments and only those regions were represented in their genetic maps. In physically long arms, while a majority of the genetic distance was again based upon recombination in distal chromosome segments, some interstitial recombination was observed. Consequently, these regions also contributed to the genetic maps. Such a pattern of recombination, skewed toward terminal segments of chromosomes, is probably a result of telomeric pairing initiation and strong positive chiasma interference. Interference averaged 0.81 in 35 pairs of adjacent segments and 0.57 across the entire recombining portions of chromosome arms. The total genetic map lengths of the arms corresponded closely to those expected on the basis of their metaphase-I chiasma frequencies. As a consequence of this uneven distribution of recombination there can be a 153-fold difference (or more) in the number of DNA base pairs per unit (centiMorgan) of genetic length.  相似文献   

20.
在普通小麦地方品种自然群体中天然存在促进小麦-外源杂种部分同源染色体配对的基因phKL。本研究比较了phKL基因与人工Ph基因突变系诱导小麦-Aegilops variabilis及小麦-黑麦杂种部分同源染色体配对的作用大小。研究结果表明,诱导小麦- Ae. variabilis(或黑麦)部分同源染色体配对作用的顺序是ph1b > phKL > ph2b > ph2a,即phKL基因的作用介于Ph1与Ph2突变体之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号