首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.  相似文献   

2.
Santos CR  Schulze A 《The FEBS journal》2012,279(15):2610-2623
Lipids form a diverse group of water-insoluble molecules that include triacylglycerides, phosphoglycerides, sterols and sphingolipids. They play several important roles at cellular and organismal levels. Fatty acids are the major building blocks for the synthesis of triacylglycerides, which are mainly used for energy storage. Phosphoglycerides, together with sterols and sphingolipids, represent the major structural components of biological membranes. Lipids can also have important roles in signalling, functioning as second messengers and as hormones. There is increasing evidence that cancer cells show specific alterations in different aspects of lipid metabolism. These alterations can affect the availability of structural lipids for the synthesis of membranes, the synthesis and degradation of lipids that contribute to energy homeostasis and the abundance of lipids with signalling functions. Changes in lipid metabolism can affect numerous cellular processes, including cell growth, proliferation, differentiation and motility. This review will examine some of the alterations in lipid metabolism that have been reported in cancer, at both cellular and organismal levels, and discuss how they contribute to different aspects of tumourigenesis.  相似文献   

3.
Membrane lipids as signaling molecules   总被引:1,自引:0,他引:1  
PURPOSE OF REVIEW: Membrane lipids play important roles in signaling reactions. They are involved in most if not all cellular signaling cascades and in a wide variety of tissue and cell types. The purpose of this review is to highlight major pathways of signaling originating in membrane lipids. Details of lipid metabolism, and its relation to protein function, will thus advance understanding of the role of lipids in health and disease. RECENT FINDINGS: Major classes of lipids including glycerophospholipids, their metabolites (eicosanoids, endocannabinoids), and sphingolipids have recently generated interest in the field of signal transduction. These lipids are tightly regulated and have an impact on various physiological functions. Importantly, aberrant lipid metabolism often leads to onset of pathology, and thus the precise balance of signaling lipids and their effectors can serve as biomarkers. SUMMARY: Membrane lipids form precursors for second messengers and functional assembly matrices on membrane domains during cellular stimulation. Many of these modifications are rapid reactions at lipid headgroups. Metabolism of the fatty acyl portion of membrane lipids leads to the generation of a bewildering complexity of lipid mediators with extended effects in space and time.  相似文献   

4.
5.
Lipid biosensors are robust tools used in both in vitro and in vivo applications of lipid imaging and lipid detection. Lactadherin C2 (LactC2) was described in 2000 as being a potent and specific sensor for phosphatidylserine (PS) (Andersen et al. Biochemistry 39:6200-6206, 2000). PS is an anionic phospholipid enriched in the inner leaflet of the plasma membrane and has paramount roles in apoptosis, cells signaling, and autophagy. The myriad roles PS plays in membrane dynamics make monitoring PS levels and function an important endeavor. LactC2 has functioned as a tantamount PS biosensor namely in the field of cellular imaging. While PS specificity and high affinity of LactC2 for PS containing membranes has been well established, much less is known regarding LactC2 selectivity for subcellular pools of PS or PS within different membrane environments (e.g., in the presence of cholesterol). Thus, there has been a lack of studies that have compared LactC2 PS sensitivity based upon the acyl chain length and saturation or the presence of other host lipids such as cholesterol. Here, we use surface plasmon resonance as a label-free method to quantitatively assess the apparent binding affinity of LactC2 for membranes containing PS with different acyl chains, different fluidity, as well as representative lipid vesicle mimetics of cellular membranes. Results demonstrate that LactC2 is an unbiased sensor for PS, and can sensitively interact with membranes containing PS with different acyl chain saturation and interact with PS species in a cholesterol-independent manner.  相似文献   

6.
Lipids are essential membrane structural components and important signal carriers. The major enzymatic metabolisms of various lipids (phospholipid, sphingolipid, cholesterol) are well studied. The developmental function of lipid metabolism has remained, for the most part, elusive. With the help of new techniques and model organisms, the important roles of lipid metabolism in development just start to emerge. Drosophila spermatogenesis is an ideal system for in vivo studies of cytokinesis and membrane remodeling during development. The metabolic regulators of many lipids, including phosphatidylinositol (PI) lipids, fatty acids and cholesterol, are reported to play critical roles in various steps during Drosophila spermatogenesis. In this mini-review, we summarized recent findings supporting a tight link between lipids metabolism and Drosophila sperm development.  相似文献   

7.
N Zumbulyadis  D F O'Brien 《Biochemistry》1979,18(24):5427-5432
Proton and carbon-13 nuclear magnetic resonance (1H and 13C NMR) spectra of rhodopsin-phospholipid membrane vesicles and sonicated disk membranes are presented and discussed. The presence of rhodopsin in egg phosphatidylcholine vesicles results in homogeneous broadening of the methylene and methyl resonances. This effect is enhanced with increasing rhodopsin content and decreased by increasing temperature. The proton NMR data indicate the phospholipid molecules exchange rapidly (less than 10(-3) s) between the bulk membrane lipid and the lipid in the immediate proximity of the rhodopsin. These interactions result in a reduction in either or both the frequency and amplitude of the tilting motion of the acyl chains. The 13C NMR spectra identify the acyl chains and the glycerol backbone as the major sites of protein lipid interaction. In the disk membranes the saturated sn-1 acyl chain is significantly more strongly immobilized than the polyunsaturated sn-2 acyl chain. This suggest a membrane model in which the lipid molecules preferentially solvate the protein with the sn-1 chain, which we term an edge-on orientation. The NMR data on rhodopsin-asolectin membrane vesicles demonstrate that the lipid composition is not altered during reconstitution of the membranes from purified rhodopsin and lipids in detergent.  相似文献   

8.
In-depth structural characterization of lipids is an essential component of lipidomics. There has been a rapid expansion of mass spectrometry methods that are capable of resolving lipid isomers at various structural levels over the past decade. These developments finally make deep-lipidotyping possible, which provides new means to study lipid metabolism and discover new lipid biomarkers. In this review, we discuss recent advancements in tandem mass spectrometry (MS/MS) methods for identification of complex lipids beyond the species (known headgroup information) and molecular species (known chain composition) levels. These include identification at the levels of carbon-carbon double bond (C=C) location and sn-position, as well as characterization of acyl chain modifications. We also discuss the integration of isomer-resolving MS/MS methods with different lipid analysis workflows and their applications in lipidomics. The results showcase the distinct capabilities of deep-lipidotyping in untangling the metabolism of individual isomers and sensitive phenotyping by using relative fractional quantitation of the isomers.  相似文献   

9.
Ether lipids, such as plasmalogens, are peroxisomederived glycerophospholipids in which the hydrocarbon chain at the sn-1 position of the glycerol backbone is attached by an ether bond, as opposed to an ester bond in the more common diacyl phospholipids. This seemingly simple biochemical change has profound structural and functional implications. Notably, the tendency of ether lipids to form non-lamellar inverted hexagonal structures in model membranes suggests that they have a role in facilitating membrane fusion processes. Ether lipids are also important for the organization and stability of lipid raft microdomains, cholesterol-rich membrane regions involved in cellular signaling. In addition to their structural roles, a subset of ether lipids are thought to function as endogenous antioxidants, and emerging studies suggest that they are involved in cell differentiation and signaling pathways. Here, we review the biology of ether lipids and their potential significance in human disorders, including neurological diseases, cancer, and metabolic disorders.  相似文献   

10.
Escherichia coli membranes have a substantial bilayer curvature stress due to a large fraction of the nonbilayer-prone lipid phosphatidylethanolamine, and a mutant (AD93) lacking this lipid is severely crippled in several membrane-associated processes. Introduction of four lipid glycosyltransferases from Acholeplasma laidlawii and Arabidopsis thaliana, synthesizing large amounts of two nonbilayer-prone, and two bilayer-forming gluco- and galacto-lipids, (i) restored the curvature stress with the two nonbilayer lipids, and (ii) diluted the high negative lipid surface charge in all AD93 bilayers. Surprisingly, the bilayer-forming diglucosyl-diacylglycerol was almost as good in improving AD93 membrane processes as the two nonbilayer-prone glucosyl-diacylglycerol and galactosyl-diacylglycerol lipids, strongly suggesting that lipid surface charge dilution by these neutral lipids is very important for E. coli. Increased acyl chain length and unsaturation, plus cardiolipin (nonbilayer-prone) content, were probably also beneficial in the modified strains. However, despite a correct transmembrane topology for the transporter LacY in the diglucosyl-diacylglycerol clone, active transport failed in the absence of a nonbilayer-prone glycolipid. The corresponding digalactosyl-diacylglycerol bilayer lipid did not restore AD93 membrane processes, despite analogous acyl chain and cardiolipin contents. Chain ordering, probed by bis-pyrene lipids, was substantially lower in the digalactosyl-diacylglycerol strain lipids due to its extended headgroup. Hence, a low surface charge density of anionic lipids is important in E. coli membranes, but is inefficient if the headgroup of the diluting lipid is too large. This strongly indicates that a certain magnitude of the curvature stress is crucial for the bilayer in vivo.  相似文献   

11.
Phosphatidylcholine (PC) is a very abundant membrane lipid in most eukaryotes including the model organism Saccharomyces cerevisiae. Consequently, the molecular species profile of PC, i.e. the ensemble of PC molecules with acyl chains differing in number of carbon atoms and double bonds, is important in determining the physical properties of eukaryotic membranes, and should be tightly regulated. In this review current insights in the contributions of biosynthesis, turnover, and remodeling by acyl chain exchange to the maintenance of PC homeostasis at the level of the molecular species in yeast are summarized. In addition, the phospholipid class-specific changes in membrane acyl chain composition induced by PC depletion are discussed, which identify PC as key player in a novel regulatory mechanism balancing the proportions of bilayer and non-bilayer lipids in yeast.  相似文献   

12.
Microalgae accumulate triacylglycerol (TAG) during nutrient deprivation and break it down after nutrient resupply, and these processes involve dramatic shifts in cellular carbon allocation. Due to the importance of algae in the global carbon cycle, and the potential of algal lipids as feedstock for chemical and fuel production, these processes are of both ecophysiological and biotechnological importance. However, the metabolism of TAG is not well understood, particularly the contributions of fatty acids (FAs) from different membrane lipids to TAG accumulation and the fate of TAG FAs during degradation. Here, we used isotopic labeling time course experiments on Chlamydomonas reinhardtii to track FA synthesis and transfer between lipid pools during nitrogen (N)-deprivation and resupply. When cells were labeled before N-deprivation, total levels of label in cellular FAs were unchanged during subsequent N-deprivation and later resupply, despite large fluxes into and out of TAG and membrane lipid pools. Detailed analyses of FA levels and labeling revealed that about one-third of acyl chains accumulating in TAG during N-deprivation derive from preexisting membrane lipids, and in total, at least 45% of TAG FAs passed through membrane lipids at one point. Notably, most acyl chains in membrane lipids during recovery after N-resupply come from TAG. Fluxes of polyunsaturated FAs from plastidic membranes into TAG during N-deprivation were particularly noteworthy. These findings demonstrate a high degree of integration of TAG and membrane lipid metabolism and highlight a role for TAG in storage and supply of membrane lipid components.

In Chlamydomonas, about a third of triacylglycerol (TAG) made during nitrogen deprivation is derived from preexisting membranes, and most membranes made after resupply are derived from TAG.  相似文献   

13.
《Biophysical journal》2021,120(17):3718-3731
The collective behavior of lipids with diverse chemical and physical features determines a membrane’s thermodynamic properties. Yet, the influence of lipid physicochemical properties on lipid dynamics, in particular interbilayer transport, remains underexplored. Here, we systematically investigate how the activation free energy of passive lipid transport depends on lipid chemistry and membrane phase. Through all-atom molecular dynamics simulations of 11 chemically distinct glycerophospholipids, we determine how lipid acyl chain length, unsaturation, and headgroup influence the free energy barriers for two elementary steps of lipid transport: lipid desorption, which is rate limiting, and lipid insertion into a membrane. Consistent with previous experimental measurements, we find that lipids with longer, saturated acyl chains have increased activation free energies compared to lipids with shorter, unsaturated chains. Lipids with different headgroups exhibit a range of activation free energies; however, no clear trend based solely on chemical structure can be identified, mirroring difficulties in the interpretation of previous experimental results. Compared to liquid-crystalline phase membranes, gel phase membranes exhibit substantially increased free energy barriers. Overall, we find that the activation free energy depends on a lipid’s local hydrophobic environment in a membrane and that the free energy barrier for lipid insertion depends on a membrane’s interfacial hydrophobicity. Both of these properties can be altered through changes in lipid acyl chain length, lipid headgroup, and membrane phase. Thus, the rate of lipid transport can be tuned through subtle changes in local membrane composition and order, suggesting an unappreciated role for nanoscale membrane domains in regulating cellular lipid dynamics.  相似文献   

14.
Members of the ATP-binding cassette (ABC) family of membrane-bound transporters are involved in multiple aspects of transport and redistribution of various lipids and their conjugates. Most ABC transporters localize to the plasma membrane; some are associated with liquid-ordered cholesterol-/sphingolipid-rich microdomains, and to a lesser extent the membranes of the Golgi and endoplasmic reticulum. Hence, ABC transporters are well placed to regulate plasma membrane lipid composition and the efflux and redistribution of structural phospholipids and sphingolipids during periods of cellular stress and recovery. ABC transporters can also modulate cellular sensitivity to extrinsic pro-apoptotic signals through regulation of sphingomyelin-ceramide biosynthesis and metabolism. The functionality of ABC transporters is, in turn, modulated by the lipid content of the microdomains in which they reside. Cholesterol, a major membrane microdomain component, is not only a substrate of several ABC transporters, but also regulates ABC activity through its effects on microdomain structure. Several important bioactive lipid mediators and toxic lipid metabolites are also effluxed by ABC transporters. In this review, the complex interactions between ABC transporters and their lipid/sterol substrates will be discussed and analyzed in the context of their relevance to cellular function, toxicity and apoptosis.  相似文献   

15.
In oxidative environments, biomembranes contain oxidized lipids with short, polar acyl chains. Two stable lipid oxidation products are PoxnoPC and PazePC. PoxnoPC has a carbonyl group, and PazePC has an anionic carboxyl group pendant at the end of the short, oxidized acyl chain. We have used MD simulations to explore the possibility of complete chain reversal in OXPLs in POPC-OXPL mixtures. The polar AZ chain of PazePC undergoes chain reversal without compromising the lipid bilayer integrity at concentrations up to 25% OXPL, and the carboxyl group points into the aqueous phase. Counterintuitively, the perturbation of overall membrane structural and dynamic properties is stronger for PoxnoPC than for PazePC. This is because of the overall condensing and ordering effect of sodium ions bound strongly to the lipids in the PazePC simulations. The reorientation of AZ chain is similar for two different lipid force fields. This work provides the first molecular evidence of the “extended lipid conformation” in phospholipid membranes. The chain reversal of PazePC lipids decorates the membrane interface with reactive, negatively charged functional groups. Such chain reversal is likely to exert a profound influence on the structure and dynamics of biological membranes, and on membrane-associated biological processes.  相似文献   

16.
Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.  相似文献   

17.
Nearly all molecular dynamics simulations of bacterial membranes simplify the lipid bilayer by composing it of only one or two lipids. Previous attempts of developing a model E. coli membrane have used only 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol) POPG lipids. However, an important constituent of bacterial membranes are lipids containing a cyclopropane ring within the acyl chain. We have developed a complex membrane that more accurately reflects the diverse population of lipids within E. coli cytoplasmic membranes, including lipids with a cyclic moiety. Differences between the deuterium order profile of cyclic lipids and monounsaturated lipids are observed. Furthermore, the inclusion of the cyclopropane ring decreases the surface density of the bilayer and produces a more rigid membrane as compared to POPE/POPG membranes. Additionally, the diverse acyl chain length creates a thinner bilayer which matches the hydrophobic thickness of E. coli transmembrane proteins better than the POPE/POPG bilayer. We believe that the complex lipid bilayer more accurately describes a bacterial membrane and suggest the use of it in molecular dynamic simulations rather than simple POPE/POPG membranes.  相似文献   

18.
Plant cytokinesis requires intense membrane trafficking and remodeling to form a specific membrane structure, the cell plate that will ultimately separate the daughter cells. The nature and the role of lipids involved in the formation of the cell plate remain unclear. Plant membranes are particularly rich in sphingolipids such as glucosyl-ceramides with long (16 carbons) or very long (24 carbons) acyl chains. We reveal here that inhibition of the synthesis of sphingolipids with very long acyl chains induces defective cell plates with persistent vesicular structures and large gaps. Golgi-derived vesicles carrying material toward the cell plate display longer vesicle–vesicle contact time and their cargos accumulate at the cell plate, suggesting membrane fusion and/or recycling defects. In vitro fusion experiments between artificial vesicles show that glycosphingolipids with very long acyl chains stimulate lipid bilayer fusion. Therefore we propose that the very long acyl chains of sphingolipids are essential structural determinants for vesicle dynamics and membrane fusion during cytokinesis.  相似文献   

19.
Polyunsaturated acyl lipids constitute approximately 50% of the hydrophobic membrane barriers that delineate the compartments of cells. The composition of these lipids is critically important for many membrane functions and, thus, for proper growth and development of all living organisms. In the model plant Arabidopsis, the isolation of mutants with altered lipid compositions has facilitated biochemical and molecular approaches to understanding lipid metabolism and membrane biogenesis. Just as importantly, the availability of a series of plant lines with specific changes in membrane lipids have provided a new resource to study the structural and adaptive roles of lipids. Now, the sequencing of the Arabidopsis genome, and the development of reverse-genetics approaches provide the tools needed to make additional discoveries about the relationships between lipid structure and membrane function in plant cells.  相似文献   

20.
Glycosphingolipids (GSLs) play major roles in cellular growth and development. Mammalian glycolipid transfer proteins (GLTPs) are potential regulators of cell processes mediated by GSLs and display a unique architecture among lipid binding/transfer proteins. The GLTP fold represents a novel membrane targeting/interaction domain among peripheral proteins. Here we report crystal structures of human GLTP bound to GSLs of diverse acyl chain length, unsaturation, and sugar composition. Structural comparisons show a highly conserved anchoring of galactosyl- and lactosyl-amide headgroups by the GLTP recognition center. By contrast, acyl chain chemical structure and occupancy of the hydrophobic tunnel dictate partitioning between sphingosine-in and newly-observed sphingosine-out ligand-binding modes. The structural insights, combined with computed interaction propensity distributions, suggest a concerted sequence of events mediated by GLTP conformational changes during GSL transfer to and/or from membranes, as well as during GSL presentation and/or transfer to other proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号