首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Climate warming is pronounced in the Arctic and migratory birds are expected to be among the most affected species. We examined the effects of local and regional climatic variations on the breeding phenology and reproductive success of greater snow geese ( Chen caerulescens atlantica ), a migratory species nesting in the Canadian Arctic. We used a long-term dataset based on the monitoring of 5447 nests and the measurements of 19 234 goslings over 16 years (1989–2004) on Bylot Island. About 50% of variation in the reproductive phenology of individuals was explained by spring climatic factors. High mean temperatures and, to a lesser extent, low snow cover in spring were associated with an increase in nest density and early egg-laying and hatching dates. High temperature in spring and high early summer rainfall were positively related to nesting success. These effects may result from a reduction in egg predation rate when the density of nesting geese is high and when increased water availability allows females to stay close to their nest during incubation recesses. Summer brood loss and production of young at the end of the summer increased when values of the summer Arctic Oscillation (AO) index were either very positive (low temperatures) or very negative (high temperatures), indicating that these components of the breeding success were most influenced by the regional summer climate. Gosling mass and size near fledging were reduced in years with high spring temperatures. This effect is likely due to a reduced availability of high quality food in years with early spring, either due to food depletion resulting from high brood density or a mismatch between hatching date of goslings and the timing of the peak of plant quality. Our analysis suggests that climate warming should advance the reproductive phenology of geese, but that high spring temperatures and extreme values of the summer AO index may decrease their reproductive success up to fledging.  相似文献   

2.
In migratory systems, variation in individual phenology can arise through differences in individual migratory behaviors, and this may be particularly apparent in partial migrant systems, where migrant and resident individuals are present within the same population. Links between breeding phenology and migratory behavior or success are generally investigated at the individual level. However, for breeding phenology in particular, the migratory behaviors of each member of the pair may need to be considered simultaneously, as breeding phenology will likely be constrained by timing of the pair member that arrives last, and carryover effects on breeding success may vary depending on whether pair members share the same migratory behavior or not. We used tracking of marked individuals and monitoring of breeding success from a partially migrant population of Eurasian oystercatchers (Haematopus ostralegus) breeding in Iceland to test whether (a) breeding phenology varied with pair migratory behavior; (b) within‐pair consistency in timing of laying differed among pair migratory behaviors; and (c) reproductive performance varied with pair migratory behavior, timing of laying, and year. We found that annual variation in timing of laying differed among pair migratory behaviors, with resident pairs being more consistent than migrant and mixed pairs, and migrant/mixed pairs breeding earlier than residents in most years but later in one (unusually cold) year. Pairs that laid early were more likely to replace their clutch after nest loss, had higher productivity and higher fledging success, independent of pair migratory behavior. Our study suggests that the links between individual migratory behavior and reproductive success can vary over time and, to a much lesser extent, with mate migratory behavior and can be mediated by differences in laying dates. Understanding these cascading effects of pair phenology on breeding success is likely to be key to predicting the impact of changing environmental conditions on migratory species.  相似文献   

3.
Abstract: An assumption of mark-recapture studies is that the marker has no effect on the animal. Neck bands have been used extensively for goose research, but there has long been concern that they may have negative effects on some demographic parameters, and recent studies have yielded contradictory results. We evaluated the effects of neck bands on adult female greater snow geese (Chen caerulescens atlantica) by contrasting breeding propensity and apparent survival of geese marked with both a plastic neck band and a metal leg band and those marked solely with metal leg bands over an 11-year period on Bylot Island, Nunavut Territory, Canada. The use of multistate mark-recapture models also allowed us to estimate neck band loss and to obtain survival and capture probabilities that were not biased by such loss. Finally, we tested the effects of neck bands on other reproductive parameters (laying date, clutch size and nest success) over a 3-year period. Neck-banded females had decreased clutch size and capture probabilities, but their apparent survival rate, nest initiation and hatching dates, and nest survival were not affected compared to leg-banded only or unbanded females. Breeding propensity, indexed by capture probabilities of neck-banded females was, on average, 48% lower that that of leg-banded-only females but clutch size was only 10% lower. Neck band loss of females was low in this population (3% per year). We urge researchers to be cautious in the use of neck bands for estimation of population parameters and that the potential negative effects of neck bands be assessed as it is likely to be species-specific.  相似文献   

4.
Temperatures in mountain areas are increasing at a higher rate than the Northern Hemisphere land average, but how fauna may respond, in particular in terms of phenology, remains poorly understood. The aim of this study was to assess how elevation could modify the relationships between climate variability (air temperature and snow melt‐out date), the timing of plant phenology and egg‐laying date of the coal tit (Periparus ater). We collected 9 years (2011–2019) of data on egg‐laying date, spring air temperature, snow melt‐out date, and larch budburst date at two elevations (~1,300 m and ~1,900 m asl) on a slope located in the Mont‐Blanc Massif in the French Alps. We found that at low elevation, larch budburst date had a direct influence on egg‐laying date, while at high‐altitude snow melt‐out date was the limiting factor. At both elevations, air temperature had a similar effect on egg‐laying date, but was a poorer predictor than larch budburst or snowmelt date. Our results shed light on proximate drivers of breeding phenology responses to interannual climate variability in mountain areas and suggest that factors directly influencing species phenology vary at different elevations. Predicting the future responses of species in a climate change context will require testing the transferability of models and accounting for nonstationary relationships between environmental predictors and the timing of phenological events.  相似文献   

5.
6.
Large increases in several populations of North American arctic geese have resulted in ecosystem-level effects from associated herbivory. Consequently, some breeding populations have shown density dependence in recruitment through declines in food availability. Differences in population trajectories of lesser snow geese (Chen caerulescens caerulescens; hereafter snow geese) and Ross's geese (C. rossii) breeding in mixed-species colonies south of Queen Maud Gulf (QMG), in Canada's central arctic, suggest that density dependence may be limiting snow goose populations. Specifically, long-term declines in age ratios (immature:adult) of harvested snow geese may have resulted from declines in juvenile survival. Thus, we focused on juvenile (first-year) survival of snow and Ross's geese in relation to timing of reproduction (annual mean nest initiation date) and late summer weather. We banded Ross's and snow geese from 1991 to 2008 in the QMG Migratory Bird Sanctuary. We used age-structured mark-recapture models to estimate annual survival rates for adults and juveniles from recoveries of dead birds. Consistent with life history differences, juvenile snow geese survived at rates higher than juvenile Ross's geese. Juvenile survival of both species also was lower in late seasons, but was unrelated to arctic weather measured during a 17-day period after banding. We found no evidence of density dependence (i.e., a decline in juvenile survival over time) in either species. We also found no interspecific differences in age-specific hunting vulnerability, though juveniles were more vulnerable than adults in both species, as expected. Thus, interspecific differences in survival were unrelated to harvest. Lower survival of juvenile Ross's geese may result from natural migration mortality related to smaller body size (e.g., greater susceptibility to inclement weather or predation) compared to juvenile snow geese. Despite lower first-year survival, recruitment by Ross's geese may still be greater than that by snow geese because of earlier sexual maturity, greater breeding propensity, and higher nest success by Ross's geese. © 2012 The Wildlife Society.  相似文献   

7.
The increase in spring temperatures in temperate regions over the last two decades has led to an advancing spring phenology, and most resident birds have responded to it by advancing their onset of breeding. The pied flycatcher (Ficedula hypoleuca) is a long‐distance migrant bird with a relatively late onset of breeding with respect to both resident birds and spring phenology in Europe. In the present correlational study, we show that some fitness components of pied flycatchers are suffering from climate change in two of the southernmost European breeding populations. In both montane study areas, temperature during May increased between 1980 and 2000 and an advancement of oak leafing was detected by using the normalized difference vegetation index (NDVI) to assess tree phenology. This might result in an advancement of the peak in availability of caterpillars, the main prey during the nestling stage. Over the past 18 yr, the time of egg laying and clutch size of pied flycatchers were not affected by the increase in spring temperatures in these Mediterranean populations. However, this increase seems to have an adverse effect on the reproductive output of pied flycatchers over the same period. Our data suggest that the mismatch between the timing of peak food supply and nestling demand caused by recent climate change might result in a reduction of parental energy expenditure that is reflected in a reduction of nestling growth and survival of fledged young in our study populations. The data seem to indicate that the breeding season has not shifted and it is the environment that has shifted away from the timing of the pied flycatcher breeding season. Mediterranean pied flycatchers were not able to advance their onset of breeding, probably, because they are constrained by their late arrival date and their restricted high altitude breeding habitat selection near the southern border of their range.  相似文献   

8.
Identifying the factors that control population dynamics in migratory animals has been constrained by our inability to track individuals throughout the annual cycle. Using stable carbon isotopes, we show that the reproductive success of a long-distance migratory bird is influenced by the quality of habitat located thousands of kilometres away on tropical wintering grounds. For male American redstarts (Setophaga ruticilla), winter habitat quality influenced arrival date on the breeding grounds, which in turn affected key variables associated with reproduction, including the number of young fledged. Based on a winter-habitat model, females occupying high-quality winter habitat were predicted to produce more than two additional young and to fledge offspring up to a month earlier compared with females wintering in poor-quality habitat. Differences of this magnitude are highly important considering redstarts are single brooded, lay clutches of only three to five eggs and spend only two-and-a-half months on the breeding grounds. Results from this study indicate the importance of understanding how periods of the annual cycle interact for migratory animals. Continued loss of tropical wintering habitat could have negative effects on migratory populations in the following breeding season, minimizing density-dependent effects on the breeding grounds and leading to further population declines. If conservation efforts are to be successful, strategies must incorporate measures to protect all the habitats used during the entire annual cycle of migratory animals.  相似文献   

9.
We studied variation in arrival date to the breeding colonies in Italy of a trans‐Saharan migratory bird, the barn swallow Hirundo rustica, in relation to variation in ecological conditions, as reflected by the normalized difference vegetation index (NDVI), in the winter quarters. Arrival date of old but not young individuals captured during consecutive breeding seasons was earlier after winters with favourable conditions. Change in arrival date in relation to change in NDVI was similar in the two sexes. Change in arrival date significantly and positively predicted change in breeding date. As a result of increased frequency of second broods determined by earlier arrival, the number of fledged offspring per season was larger after African winters with good in comparison to poor ecological conditions for barn swallows. This is the first study demonstrating phenotypic plasticity in migration phenology of a long‐distance migratory bird in relation to ecological conditions during wintering.  相似文献   

10.
For multiple-brooded species, the number of reproductive events per year is a major determinant of an individual''s fitness. Where multiple brooding is facultative, its occurrence is likely to change with environmental conditions, and, as a consequence, the current rates of environmental change could have substantial impacts on breeding patterns. Here we examine temporal population-level trends in the proportion of female great tits (Parus major) producing two clutches per year (‘double brooding’) in four long-term study populations in The Netherlands, and show that the proportion of females that double brood has declined in all populations, with the strongest decline taking place in the last 30 years of the study. For one of the populations, for which we have data on caterpillar abundance, we show that the probability that a female produces a second clutch was related to the timing of her first clutch relative to the peak in caterpillar abundance, and that the probability of double brooding declined over the study period. We further show that the number of recruits from the second clutch decreased significantly over the period 1973–2004 in all populations. Our results indicate that adjustment to changing climatic conditions may involve shifts in life-history traits other than simply the timing of breeding.  相似文献   

11.
12.
Abstract The Beringia region of the Arctic contains 2 colonies of lesser snow geese (Chen caerulescens caerulescens) breeding on Wrangel Island, Russia, and Banks Island, Canada, and wintering in North America. The Wrangel Island population is composed of 2 subpopulations from a sympatric breeding colony but separate wintering areas, whereas the Banks Island population shares a sympatric wintering area in California, USA, with one of the Wrangel Island subpopulations. The Wrangel Island colony represents the last major snow goose population in Russia and has fluctuated considerably since 1970, whereas the Banks Island population has more than doubled. The reasons for these changes are unclear, but hypotheses include independent population demographics (survival and recruitment) and immigration and emigration among breeding or wintering populations. These demographic and movement patterns have important ecological and management implications for understanding goose population structure, harvest of admixed populations, and gene flow among populations with separate breeding or wintering areas. From 1993 to 1996, we neckbanded molting birds at their breeding colonies and resighted birds on the wintering grounds. We used multistate mark-recapture models to evaluate apparent survival rates, resighting rates, winter fidelity, and potential exchange among these populations. We also compared the utility of face stain in Wrangel Island breeding geese as a predictor of their wintering area. Our results showed similar apparent survival rates between subpopulations of Wrangel Island snow geese and lower apparent survival, but higher emigration, for the Banks Island birds. Males had lower apparent survival than females, most likely due to differences in neckband loss. Transition between wintering areas was low (<3%), with equal movement between northern and southern wintering areas for Wrangel Island birds and little evidence of exchange between the Banks and northern Wrangel Island populations. Face staining was an unreliable indicator of wintering area. Our findings suggest that northern and southern Wrangel Island subpopulations should be considered a metapopulation in better understanding and managing Pacific Flyway lesser snow geese. Yet the absence of a strong population connection between Banks Island and Wrangel Island geese suggests that these breeding colonies can be managed as separate but overlapping populations. Additionally, winter population fidelity may be more important in lesser snow geese than in other species, and both breeding and wintering areas are important components of population management for sympatric wintering populations.  相似文献   

13.
In highly seasonal environments, timing of breeding of organisms is typically set to coincide with the period of highest resource availability. However, breeding phenology may not change at a rate sufficient to keep up with rapid changes in the environment in the wake of climate change. The lack of synchrony between the phenology of consumers and that of their resources can lead to a phenomenon called trophic mismatch, which may have important consequences on the reproductive success of herbivores. We analyzed long‐term data (1991–2010) on climate, plant phenology and the reproduction of a long‐distance Arctic migrant, the greater snow goose (Chen caerulescens atlantica), in order to examine the effects of mismatched reproduction on the growth of young. We found that geese are only partially able to adjust their breeding phenology to compensate for annual changes in the timing of high‐quality food plants, leading to mismatches of up to 20 days between the two. The peak of nitrogen concentration in plants, an index of their nutritive quality for goslings, occurred earlier in warm springs with an early snow melt. Likewise, mismatch between hatch dates of young and date of peak nitrogen was more important in years with early snow melt. Gosling body mass and structural size at fledging was reduced when trophic mismatch was high, particularly when the difference between date of peak nitrogen concentration and hatching was >9 days. Our results support the hypothesis that trophic mismatch can negatively affect the fitness of Arctic herbivores and that this is likely to be exacerbated by rising global temperatures.  相似文献   

14.
Animals make behavioural and reproductive decisions that maximise their lifetime reproductive success, and thus their fitness, in light of periodic and stochastic variability of the environment. Modelling the variation of an individual's energy levels formalises this tradeoff and helps to quantify the population‐level consequences of stressors (e.g. disturbance from human activities and environmental change) that can affect behaviour or physiology. In this study, we develop a dynamic state variable model for the spatially explicit behaviour, physiology and reproduction of a female, long‐lived, migratory marine vertebrate. The model can be used to investigate the spatio‐temporal patterns of behaviour and reproduction that allow an individual to maximise its overall reproductive output. We parametrised the model for eastern North Pacific blue whales Balaenoptera musculus, and used it to predict the effects of changing environmental conditions and increasing human disturbance on the population's vital rates. In baseline conditions, the model output had high fidelity to observed energy dynamics, movement patterns and reproductive strategies. Simulated scenarios suggested that environmental changes could have severe consequences on the population's vital rates, but that individuals could tolerate high levels of anthropogenic disturbance. However, this ability depended on where, when and how often disturbance occurred. In scenarios with both environmental change and anthropogenic disturbance, synergistic interactions caused stronger effects than in isolation. In general, larger body size offered a buffer against stochasticity and disturbance, and, consequently, we predicted juveniles to be more susceptible to disturbance. We also predicted that females prioritise their own survival at the expense of the current reproductive attempt, presumably the result of their long lifespan. Our approach provides a general framework to make predictions of the cumulative and synergistic effects of human disturbance and climate change on migratory populations, which can inform effective management and conservation efforts.  相似文献   

15.
Studies of the phenological responses of animals to climate change typically emphasize the initiation of breeding although climatic effects on the cessation and length of the breeding period may be as or more influential of fitness. We quantified links between climate, the cessation and length of the breeding period, and individual survival and reproduction using a 34‐year study of a resident song sparrow (Melospiza melodia) population subject to dramatic variation in climate. We show that the cessation and length of the breeding period varied strongly across years, and predicted female annual fecundity but not survival. Breeding period length was more influential of fecundity than initiation or cessation of breeding alone. Warmer annual temperature and drier winters and summers predicted an earlier cessation of breeding. Population density, the date breeding was initiated, a female's history of breeding success, and the number of breeding attempts initiated previously also predicted the cessation of breeding annually, indicating that climatic, population, and individual factors may interact to affect breeding phenology. Linking climate projections to our model results suggests that females will both initiate and cease breeding earlier in the future; this will have opposite effects on individual reproductive rate because breeding earlier is expected to increase fecundity, whereas ceasing breeding earlier should reduce it. Identifying factors affecting the cessation and length of the breeding period in multiparous species may be essential to predicting individual fitness and population demography. Given a rich history of studies on the initiation of breeding in free‐living species, re‐visiting those data to estimate climatic effects on the cessation and length of breeding should improve our ability to predict the impacts of climate change on multiparous species.  相似文献   

16.
Monitoring and predicting evolutionary changes underlying current environmental modifications are complex challenges. Recent approaches to achieve these objectives include assessing the genetic variation and effects of candidate genes on traits indicating adaptive potential. In birds, for example, short tandem repeat polymorphism at four candidate genes (CLOCK, NPAS2, ADCYAP1, and CREB1) has been linked to variation in phenological traits such as laying date and timing of migration. However, our understanding of their importance as evolutionary predictors is still limited, mainly because the extent of genotype–environment interactions (GxE) related to these genes has yet to be assessed. Here, we studied a population of Tree swallow (Tachycineta bicolor) over 4 years in southern Québec (Canada) to assess the relationships between those four candidate genes and two phenological traits related to reproduction (laying date and incubation duration) and also determine the importance of GxE in this system. Our results showed that NPAS2 female genotypes were nonrandomly distributed across the study system and formed a longitudinal cline with longer genotypes located to the east. We observed relationships between length polymorphism at all candidate genes and laying date and/or incubation duration, and most of these relationships were affected by environmental variables (breeding density, latitude, or temperature). In particular, the positive relationships detected between laying date and both CLOCK and NPAS2 female genotypes were variable depending on breeding density. Our results suggest that all four candidate genes potentially affect timing of breeding in birds and that GxE are more prevalent and important than previously reported in this context.  相似文献   

17.
During 2002–2005 we analyzed Lack’s Hypothesis about the timing of the breeding of marsh harriers (Circus aeruginosus) in the Poodří to the breeding period and preference of heterogeneous habitat. An analysis of 43 nests revealed quantitative differences. Birds which started breeding earlier, reached significantly higher reproductive success than later breeding birds regardless of nesting habitat (P = 0.003, n nests = 43). Even when the birds invested into their offspring the same way, their breeding success was not always the same. When the females nested in the common reed (Phragmites communis), they reached higher reproductive output than females nesting in cattail (Typha sp.) (P = 0.01, n cattail = 18, n common reed = 25). The habitat of the common reed is characterized by higher and denser vegetation cover than cattail vegetation (P < 0.001, n measurements = 174 for both variables).  相似文献   

18.
ABSTRACT.   Despite being widespread and easily observed, little is known about the life history of Glaucous Gulls ( Larus hyperboreus ). From 1984 to 2007, we examined their breeding biology and demography at Coats Island, Nunavut, Canada, where they nest alongside a colony of 30,000 pairs of Thick-billed Murres ( Uria lomvia ). The gulls fed mainly on murre eggs and chicks and by scavenging adult carcasses. The median age at first breeding was 5 yr, and the mean age was 4.8 ± 0.9 yr. Adult survival was estimated as 0.84 ± 0.03 (SE). The mean clutch size was 2.56 eggs and the mean number of young reared per year was 1.6 (range = 0.9–2.2). Birds reared at the colony provided 40% of recruits. Assuming that survival of locally reared chicks that emigrated was similar to that of chicks that returned to the colony, about 22% of the young gulls survived to breeding age. The timing of breeding by Glaucous Gulls appeared related to the timing of laying by murres. Although the demographic characteristics of Glaucous Gulls in our study were similar to those of populations of other large gulls, adult survival was at the lower end of the range for populations of large Larus gulls. There is some evidence that Glaucous Gulls exhibit lower survival than large gulls breeding in temperate areas, possibly because of contaminant burdens. In general, however, the demographic characteristics of large gulls show little variation and are probably a product of their common phylogeny.  相似文献   

19.
Despite the importance of maternal effects in evolution, and knowledge of links among nest site choice, timing of nesting, offspring sex, and reproductive success in animals with environmental sex determination, these attributes have not been rigorously studied in a combined and natural context. To address this need we studied the relationships between three maternal traits (nest site choice, lay date, and nest depth) and two fitness‐related attributes of offspring (hatchling sex and embryonic survival) in the riverine turtle Carettochelys insculpta, a species with temperature‐dependent sex determination, for four years. Predation and flooding were the major sources of embryonic mortality in 191 nests. Embryonic survival was influenced by both lay date and nest site choice: in one year when nesting began later than average, nests laid later and at lower elevations were destroyed by early wet season river rises. In other years early nesting precluded flood mortality. However, turtles did not nest at the highest available elevations, and a field experiment confirmed that turtles were constrained to nest at lower elevations where they could construct a nest chamber. The principal determinant of hatchling sex in 140 nests was lay date, which in turn was apparently related to the magnitude of the previous wet season(s). Clutches laid earlier in the season (a female's first clutch) produced mainly males, while later clutches (her second clutch) yielded mostly females, due to seasonal increases in air temperatures. Accordingly, later nesting produced female‐biased hatchling sex ratios in 1996, while earlier nesting resulted in sex ratios near unity in the other years. However, all‐female nests were more likely to be flooded than mixed‐sex or all‐male nests in years when nesting was late. In conclusion, we found evidence that the position of two maternal trait distributions (elevation of the nest site and lay date), associated with the reproductive strategy of C. insculpta, reflect a combination of natural selection, physical constraints, and phenotypic plasticity. © 2004 The Linnean Society of London, Biological Journal of the Linnean Society, 2004, 81 , 1–16.  相似文献   

20.
Avian life-history studies are often conducted on populations nesting in nestboxes. However, the type of nestbox used is a potentially confounding variable, as each model shows specific characteristics. In recent decades, a new commercial model of artificial nestbox made of woodcrete, a mixture of sawdust and additives, has become popular owing to its better protection against predators compared with the classic wooden design. We assess the effect of nestbox type on the breeding ecology of Tree Sparrows Passer montanus , focusing on their thermal properties, an influential factor in nestbox selection. Occupancy rates and reproductive parameters of Tree Sparrows were compared between birds breeding in woodcrete and wooden nestboxes over 5 years. Woodcrete nestboxes had a higher occupancy rate and birds breeding in them had earlier clutches, a shorter incubation period and more reproductive attempts per season than birds nesting in wooden boxes. Clutch size and nestling condition did not differ between nestbox types, but reproductive success was higher in woodcrete nestboxes. The higher temperature in woodcrete nestboxes (1.5 °C higher on average) might explain these differences. Such differences may bias results obtained in comparative studies where more than one nestbox type is used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号