首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary plant cell wall is laid down over a brief period of time during cytokinesis. Initially, a membrane network forms at the equator of a dividing cell. The cross-wall is then assembled and remodeled within this membrane compartment. Callose is the predominant luminal component of the nascent cross-wall or cell plate, but is not a component of intact mature cell walls, which are composed primarily of cellulose, pectins and xyloglucans. Widely accepted models postulate that callose comprises a transient, rapid spreading force for the expansion of membrane networks during cytokinesis. In this study, we clone and characterize an Arabidopsis gene, MASSUE / AtGSL8 , which encodes a putative callose synthase. massue mutants are seedling-lethal and have a striking cytokinesis-defective phenotype. Callose deposition was delayed in the cell plates of massue mutants. Mutant cells were occasionally bi- or multi-nucleate, with cell-wall stubs, and we frequently observed gaps at the junction between cross-walls and parental cell walls. The results suggest that the timely deposition of callose is essential for the completion of plant cytokinesis. Surprisingly, confocal analysis revealed that the cell-plate membrane compartment forms and expands, seemingly as far as the parental wall, prior to the appearance of callose. We discuss the possibility that callose may be required to establish a lasting connection between the nascent cross-wall and the parental cell wall.  相似文献   

2.
《Current biology : CB》2023,33(5):926-939.e9
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   

3.
Erwinia amylovora is the causal agent of the fire blight disease in some plants of the Rosaceae family. The non‐host plant Arabidopsis serves as a powerful system for the dissection of mechanisms of resistance to E. amylovora. Although not yet known to mount gene‐for‐gene resistance to E. amylovora, we found that Arabidopsis activated strong defence signalling mediated by salicylic acid (SA), with kinetics and amplitude similar to that induced by the recognition of the bacterial effector avrRpm1 by the resistance protein RPM1. Genetic analysis further revealed that SA signalling, but not signalling mediated by ethylene (ET) and jasmonic acid (JA), is required for E. amylovora resistance. Erwinia amylovora induces massive callose deposition on infected leaves, which is independent of SA, ET and JA signalling and is necessary for E. amylovora resistance in Arabidopsis. We also observed tumour‐like growths on E. amylovora‐infected Arabidopsis leaves, which contain enlarged mesophyll cells with increased DNA content and are probably a result of endoreplication. The formation of such growths is largely independent of SA signalling and some E. amylovora effectors. Together, our data reveal signalling requirements for E. amylovora‐induced disease resistance, callose deposition and cell fate change in the non‐host plant Arabidopsis. Knowledge from this study could facilitate a better understanding of the mechanisms of host defence against Eamylovora and eventually improve host resistance to the pathogen.  相似文献   

4.
Plant roots grow due to cell division in the meristem and subsequent cell elongation and differentiation, a tightly coordinated process that ensures growth and adaptation to the changing environment. How the newly formed cells decide to stop elongating becoming fully differentiated is not yet understood. To address this question, we established a novel approach that combines the quantitative phenotypic variability of wild‐type Arabidopsis roots with computational data from mathematical models. Our analyses reveal that primary root growth is consistent with a Sizer mechanism, in which cells sense their length and stop elongating when reaching a threshold value. The local expression of brassinosteroid receptors only in the meristem is sufficient to set this value. Analysis of roots insensitive to BR signaling and of roots with gibberellin biosynthesis inhibited suggests distinct roles of these hormones on cell expansion termination. Overall, our study underscores the value of using computational modeling together with quantitative data to understand root growth.  相似文献   

5.
The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature‐sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub‐2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) receptor‐like kinase gene whose functions in leaf development have not been demonstrated. The sub‐2 mutant displayed impaired blade development, asymmetric leaf shape and altered venation patterning under high ambient temperature (30°C), but these defects were less pronounced at normal growth temperature (22°C). Loss of SCM/SUB function results in reduced cell proliferation and abnormal cell expansion, as well as altered auxin patterning. SCM/SUB is initially expressed throughout leaf primordia and becomes restricted to the vascular cells, coinciding with its roles in early leaf patterning and venation formation. Furthermore, constitutive expression of the SCM/SUB gene also restricts organ growth by inhibiting the transition from cell proliferation to expansion. We propose the existence of a SCM/SUB‐mediated developmental stage‐specific signal for leaf patterning, and highlight the importance of the balance between cell proliferation and differentiation for leaf morphogenesis.  相似文献   

6.
p53 protects cells from DNA damage by inducing cell-cycle arrest upon encountering genomic stress. Among other pathways, p53 elicits such an effect by inhibiting mammalian target of rapamycin complex 1 (mTORC1), the master regulator of cell proliferation and growth. Although recent studies have indicated roles for both p53 and mTORC1 in stem cell maintenance, it remains unclear whether the p53-mTORC1 pathway is conserved to mediate this process under normal physiological conditions. Spermatogenesis is a classic stem cell-dependent process in which undifferentiated spermatogonia undergo self-renewal and differentiation to maintain the lifelong production of spermatozoa. To better understand this process, we have developed a novel flow cytometry (FACS)-based approach that isolates spermatogonia at consecutive differentiation stages. By using this as a tool, we show that genetic loss of p53 augments mTORC1 activity during early spermatogonial differentiation. Functionally, loss of p53 drives spermatogonia out of the undifferentiated state and causes a consistent expansion of early differentiating spermatogonia until the stage of preleptotene (premeiotic) spermatocyte. The frequency of early meiotic spermatocytes is, however, dramatically decreased. Thus, these data suggest that p53-mTORC1 pathway plays a critical role in maintaining the homeostasis of early spermatogonial differentiation. Moreover, our FACS approach could be a valuable tool in understanding spermatogonial differentiation.  相似文献   

7.
8.
We identified a novel mutation of a nuclear-encoded gene, designated as CRUMPLED LEAF (CRL), of Arabidopsis thaliana that affects the morphogenesis of all plant organs and division of plastids. Histological analysis revealed that planes of cell division were distorted in shoot apical meristems (SAMs), root tips, and embryos in plants that possess the crl mutation. Furthermore, we observed that differentiation patterns of cortex and endodermis cells in inflorescence stems and root endodermis cells were disturbed in the crl mutant. These results suggest that morphological abnormalities observed in the crl mutant were because of aberrant cell division and differentiation. In addition, cells of the crl mutant contained a reduced number of enlarged plastids, indicating that the division of plastids was inhibited in the crl. The CRL gene encodes a novel protein with a molecular mass of 30 kDa that is localized in the plastid envelope. The CRL protein is conserved in various plant species, including a fern, and in cyanobacteria, but not in other organisms. These data suggest that the CRL protein is required for plastid division, and it also plays an important role in cell differentiation and the regulation of the cell division plane in plants. A possible function of the CRL protein is discussed.  相似文献   

9.
Callose (beta-1,3-glucan) is produced at different locations in response to biotic and abiotic cues. Arabidopsis contains 12 genes encoding callose synthase (CalS). We demonstrate that one of these genes, CalS5, encodes a callose synthase which is responsible for the synthesis of callose deposited at the primary cell wall of meiocytes, tetrads and microspores, and the expression of this gene is essential for exine formation in pollen wall. CalS5 encodes a transmembrane protein of 1923 amino acid residues with a molecular mass of 220 kDa. Knockout mutations of the CalS5 gene by T-DNA insertion resulted in a severe reduction in fertility. The reduced fertility in the cals5 mutants is attributed to the degeneration of microspores. However, megagametogenesis is not affected and the female gametes are completely fertile in cals5 mutants. The CalS5 gene is also expressed in other organs with the highest expression in meiocytes, tetrads, microspores and mature pollen. Callose deposition in the cals5 mutant was nearly completely lacking, suggesting that this gene is essential for the synthesis of callose in these tissues. As a result, the pollen exine wall was not formed properly, affecting the baculae and tectum structure and tryphine was deposited randomly as globular structures. These data suggest that callose synthesis has a vital function in building a properly sculpted exine, the integrity of which is essential for pollen viability.  相似文献   

10.

Background and Aims

The pattern of callose deposition was followed in developing stomata of the fern Asplenium nidus to investigate the role of this polysaccharide in guard cell (GC) wall differentiation and stomatal pore formation.

Methods

Callose was localized by aniline blue staining and immunolabelling using an antibody against (1 → 3)-β-d-glucan. The study was carried out in stomata of untreated material as well as of material treated with: (1) 2-deoxy-d-glucose (2-DDG) or tunicamycin, which inhibit callose synthesis; (2) coumarin or 2,6-dichlorobenzonitrile (dichlobenil), which block cellulose synthesis; (3) cyclopiazonic acid (CPA), which disturbs cytoplasmic Ca2+ homeostasis; and (d) cytochalasin B or oryzalin, which disintegrate actin filaments and microtubules, respectively.

Results

In post-cytokinetic stomata significant amounts of callose persisted in the nascent ventral wall. Callose then began degrading from the mid-region of the ventral wall towards its periphery, a process which kept pace with the formation of an ‘internal stomatal pore’ by local separation of the partner plasmalemmata. In differentiating GCs, callose was consistently localized in the developing cell-wall thickenings. In 2-DDG-, tunicamycin- and CPA-affected stomata, callose deposition and internal stomatal pore formation were inhibited. The affected ventral walls and GC wall thickenings contained membranous elements. Stomata recovering from the above treatments formed a stomatal pore by a mechanism different from that in untreated stomata. After coumarin or dichlobenil treatment, callose was retained in the nascent ventral wall for longer than in control stomata, while internal stomatal pore formation was blocked. Actin filament disintegration inhibited internal stomatal pore formation, without any effect on callose deposition.

Conclusions

In A. nidus stomata the time and pattern of callose deposition and degradation play an essential role in internal stomatal pore formation, and callose participates in deposition of the local GC wall thickenings.  相似文献   

11.
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1.  相似文献   

12.
The deposition of callose, a (1,3)-β-glucan cell wall polymer, can play an essential role in the defense response to invading pathogens. We could recently show that Arabidopsis thaliana lines with an overexpression of the callose synthase gene PMR4 gained complete penetration resistance to the adapted powdery mildew Golovinomyces cichoracearum and the non-adapted powdery mildew Blumeria graminis f. sp hordei. The penetration resistance is based on the transport of the callose synthase PMR4 to the site of attempted fungal penetration and the subsequent formation of enlarged callose deposits. The deposits differed in their total diameter comparing both types of powdery mildew infection. In this study, further characterization of these callose deposits revealed that size differences were especially pronounced in the core region of the deposits. This suggests that specific, pathogen-dependent factors exist, which might regulate callose synthase transport to the core region of forming deposits.  相似文献   

13.
14.
《Developmental cell》2022,57(4):543-560.e9
  1. Download : Download high-res image (240KB)
  2. Download : Download full-size image
  相似文献   

15.
Root apical meristem (RAM) and shoot apical meristem (SAM) are vital for the correct development of the plant. The direction, frequency, and timing of cell division must be tightly controlled in meristems. Here, we isolated new Arabidopsis mutants with shorter roots and fasciated stems. In the tonsoku (tsk) mutant, disorganized RAM and SAM formation resulted from the frequent loss of proper alignment of the cell division plane. Irregular cell division also occurred in the tsk embryo, and the size of cells in meristems and embryo in tsk mutant was larger than in the wild type. In the enlarged SAM of the tsk mutant, multiple centers of cells expressing WUSCHEL (WUS) were observed. In addition, expression of SCARECROW (SCR) in the quiescent center (QC) disappeared in the disorganized RAM of tsk mutant. These results suggest that disorganized cell arrangements in the tsk mutants result in disturbed positional information required for the determination of cell identity. The TSK gene was found to encode a protein with 1311 amino acids that possesses two types of protein-protein interaction motif, leucine-glycine-asparagine (LGN) repeats and leucine-rich repeats (LRRs). LGN repeats are present in animal proteins involved in asymmetric cell division, suggesting the possible involvement of TSK in cytokinesis. On the other hand, the localization of the TSK-GFP (green fluorescent protein) fusion protein in nuclei of tobacco BY-2 cells and phenotypic similarity of tsk mutants to other fasciated mutants suggest that the tsk mutation may cause disorganized cell arrangements through defects in genome maintenance.  相似文献   

16.
17.
The formation of leaf polarity is critical for leaf morphogenesis. In this study, we characterized and cloned an Arabidopsis gene, AS1/2 ENHANCER7 (AE7), which is required for both leaf adaxial-abaxial polarity formation and normal cell proliferation. The ae7 mutant exhibited leaf adaxial-abaxial polarity defects and double mutants combining ae7 with the leaf polarity mutants as1 (asymmetric leaves1), as2, rdr6 (RNA-dependent RNA polymerase6) or ago7/zip (argonaute7/zippy) all resulted in plants with an apparently enhanced loss of adaxial leaf identity. In addition, ae7 also showed decreased cell proliferation in both leaves and roots, compensated by increased cell sizes in leaves. AE7 encodes a protein conserved in many eukaryotic organisms, ranging from unicellular yeasts to humans; however, the functions of AE7 family members from other species have not been reported. In situ hybridization revealed that AE7 is expressed in a spotted pattern in plant tissues, similar to cell-cycle marker genes such as HISTONE4. Moreover, the ae7 endoploidy and expression analysis of several cell-cycle marker genes in ae7 suggest that the AE7 gene is required for cell cycle progression. As the previously characterized 26S proteasome and ribosome mutants also affect both leaf adaxial-abaxial polarity and cell proliferation, similar to the defects in ae7, we propose that normal cell proliferation may be essential for leaf polarity establishment. Possible models for how cell proliferation influences leaf adaxial-abaxial polarity establishment are discussed.  相似文献   

18.
19.
Controlling the initiation of cell migration plays a fundamental role in shaping the tissue during embryonic development. During gastrulation in zebrafish, some mesendoderm cells migrate inward to form the endoderm as the innermost germ layer along the yolk syncytial layer. However, how the initiation of inward migration is regulated is poorly understood. In this study, we performed light-sheet microscopy-based 3D single-cell tracking consisting of (a) whole-embryo time-lapse imaging with light-sheet microscopy and (b) three-dimensional single cell tracking in the zebrafish gastrula in which cells are marked with histone H2A-mCherry (nuclei) and the sox17:EGFP transgene (expressed in endoderm cells). We analyzed the correlation between the timing of cell internalization and cell division. Most cells that differentiated into endoderm cells began to internalize during the first half of the cell cycle, where the length of a cell cycle was defined by the period between two successive cell divisions. By contrast, the timing of other internalized cells was not correlated with a certain phase of the cell cycle. These results suggest the possibility that cell differentiation is associated with the relationship between cell cycle progression and the start of internalization. Moreover, the 3D single-cell tracking approach is useful for further investigating how cell migration is integrated with cell proliferation to shape tissues in zebrafish embryos.  相似文献   

20.
Mutations in the TUMOROUS SHOOT DEVELOPMENT2 (TSD2) gene reduce cell adhesion, and in strongly affected individuals cause non-coordinated shoot development that leads to disorganized tumor-like growth in vitro. tsd2 mutants showed increased activity of axial meristems, reduced root growth and enhanced de-etiolation. The expression domains of the shoot meristem marker genes KNAT1 and KNAT2 were enlarged in the mutant background. Soil-grown tsd2 mutants were dwarfed, but overall showed morphology similar to that of the wild-type (WT). The TSD2 gene was identified by map-based cloning. It encodes a novel 684 amino acid polypeptide containing a single membrane-spanning domain in the N-terminal part and S-adenosyl-l-methionine binding and methyltransferase domains in the C-terminal part. Expression of a TSD2:GUS reporter gene was detected mainly in meristems and young tissues. A green fluorescent protein-tagged TSD2 protein localized to the Golgi apparatus. The cell-adhesion defects indicated altered pectin properties, and we hypothesize that TSD2 acts as a pectin methyltransferase. However, analyses of the cell-wall composition revealed no significant differences of the monosaccharide composition, the uronic acid content and the overall degree of pectin methylesterification between tsd2 and WT. The findings support a function of TSD2 as a methyltransferase, with an essential role in cell adhesion and coordinated plant development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号