首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Stem cells in plants, established during embryogenesis, are located in the centers of the shoot apical meristem (SAM) and the root apical meristem (RAM). Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely. Although fully differentiated organs such as leaves do not contain stem cells, cells in such organs do have the capacity to re-establish new stem cells, especially under the induction of phytohormones in vitro. Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia, respectively. This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.  相似文献   

2.
Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.  相似文献   

3.
Plants need nutrient to grow and plant cells need nutrient to divide. The meristems are the factories and cells that are left behind will expand and differentiate. However, meristems are not simple homogenous entities; cells in different parts of the meristem do different things. Positional cues operate that can fate cells into different tissue domains. However, founder/stem cells persist in specific locations within the meristem e.g. the quiescent centre of root apical meristem (RAM) and the lower half of the central zone of the shoot apical meristem (SAM). Given the complexity of meristems, do their cells simply respond to a diffusing gradient of photosynthate? This in turn begs the question, why do stem cell populations tend to have longer cell cycles than their immediate descendants given that like all other cells they are directly in the path of diffusing nutrient? In this review, we have examined the extent to which nutrient sensing might be operating in meristems. The scene is set for sugar sensing, the plant cell cycle, SAMs and RAMs. Special emphasis is given to the metabolic regulator, SnRK1 (SNF1-related protein kinase 1), hexokinase and the trehalose pathway in relation to sugar sensing. The unique plant cell cycle gene, cylin-dependent kinase B1;1 may have evolved to be particularly responsive to sugar signalling pathways. Also, the homeobox gene, STIMPY, emerges strongly as a link between sugar sensing, plant cell proliferation and development. Flowering can be influenced by sucrose and glucose levels and both meristem identity and organ identity genes could well be differentially sensitive to sucrose and glucose signals. We also describe how meristems deal with extra photosynthate as a result of exposure to elevated CO2. What we review are numerous instances of how developmental processes can be affected by sugars/nutrients. However, given the scarcity of knowledge we are unable to provide uncontested links between nutrient sensing and specific activities in meristems.  相似文献   

4.
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUSCLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species. S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007.  相似文献   

5.
A fate map for the shoot apical meristem of Zea mays L. at the time of germination was constructed by examining somatic sectors (clones) induced by -rays. The shoot apical meristem produced stem, leaves, and reproductive structures above leaf 6 after germination and the analysis here concerns their formation. On 160 adult plants which had produced 17 or 18 leaves, 277 anthocyanin-deficient sectors were scored for size and position. Sectors found on the ear shoot or in the tassel most often extended into the vegetative part of the plant. Sectors ranged from one to six internodes in length and some sectors of more than one internode were observed at all positions on the plant. Single-internode sectors predominated in the basal internodes (7,8,9) while longer sectors were common in the middle and upper internodes. The apparent number of cells which gave rise to a particular internode was variable and sectors were not restricted to the lineage unit: a leaf, the internode below it, and the axillary bud and prophyll at the base of the internode. These observations established two major features of meristem activity: 1) at the time of germination the developmental fate of any cell or group of cells was not fixed, and 2) at the time of germination cells at the same location in a meristem could produce greatly different amounts of tissue in the adult plant. Consequently, the developmental fate of specific cells in the germinating meristem could only be assigned in a general way.Abbreviations ACN apparent cell number - LI, LII, LI-LII sectors restricted to the epidermis, the subepidermis, or encompassing epidermis and subepidermis - PCN progenitor cell  相似文献   

6.
In higher plants, organ formation occurs throughout life. This remarkable process occurs at a collection of stem cells termed the shoot meristem. The shoot meristem originates during embryogenesis and is later responsible for generating the above-ground portion of the plant. The shoot meristem can be thought of as having two zones, a central zone containing meristematic cells in an undifferentiated state, and a surrounding peripheral zone where cells enter a specific developmental pathway toward a differentiated state. Recent advances have revealed several genes that specifically regulate meristem development inArabidopsis. The function of these genes and their genetic interactions are described.  相似文献   

7.
8.
9.
10.
Perhaps the most amazing feature of plants is their ability to grow and regenerate for years, sometimes even centuries. This fascinating characteristic is achieved thanks to the activity of stem cells, which reside in the shoot and root apical meristems. Stem cells function as a reserve of undifferentiated cells to replace organs and sustain postembryonic plant growth. To maintain meristem function, stem cells have to generate new cells at a rate similar to that of cells leaving the meristem and differentiating, thus achieving a balance between cell division and cell differentiation. Recent findings have improved our knowledge on the molecular mechanisms necessary to establish this balance and reveal a fundamental signaling role for the plant hormone cytokinin. Evidence has been provided to show that in the root meristem cytokinin acts in defined developmental domains to control cell differentiation rate, thus controlling root meristem size.  相似文献   

11.
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.  相似文献   

12.
13.
As the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter‐dependence of cell‐cycle machinery and meristem‐organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell‐cycle machinery in the shoot apex by expression of a dominant negative allele of the A‐type cyclin‐dependent kinase (CDK) CDKA;1 in meristematic cells. A decrease in the cell division rate within the SHOOT MERISTEMLESS domain of the shoot apex dramatically affected plant growth and development. Within the meristem, a subset of cells was driven into the differentiation pathway, as indicated by premature cell expansion and onset of endo‐reduplication. Although the meristem structure and expression patterns of the meristem identity genes were maintained in most plants, the reduced CDK activity caused splitting of the meristem in some plants. This phenotype correlated with the level of expression of the dominant negative CDKA;1 allele. Therefore, we propose a threshold model in which the effect of the cell‐cycle machinery on meristem organization is determined by the level of CDK activity.  相似文献   

14.
The molecular mechanisms of de novo meristem formation, cell differentiation and the integration of the cell cycle machinery into appropriate stages of the developmental programmes are still largely unknown in plants. Legume root nodules, which house nitrogen-fixing rhizobia, are unique plant organs and their development may serve as a model for organogenetic processes in plants. Nodules form and are essential for the plant only under limitation of combined nitrogen in the soil. Moreover, their development is triggered by external mitogenic signals produced by their symbiotic partners, the rhizobia. These signals, the lipochitooligosaccharide Nod factors, act as host-specific morphogens and induce the re-entry of root cortical cells into mitotic cycles. Maintenance of cell division activity leads to the formation of a persistent nodule meristem from which cells exit continuously and enter the nodule differentiation programme, involving multiple cycles of endoreduplication and enlargement of nuclear and cell volumes. While the small diploid 2C cells remain uninfected, the large polyploid cells can be invaded and, after completing the differentiation programme, host the nitrogen-fixing bacteroids. This review summarizes the present knowledge on cell cycle reactivation and meristem formation in response to Nod factors and reports on a novel plant cell cycle regulator that can switch mitotic cycles to differentiation programmes.  相似文献   

15.
16.
This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.  相似文献   

17.
Brassinosteroids (BRs) play crucial roles in plant growth and development. Previous studies have shown that BRs promote cell elongation in vegetative organs in several plant species, but their contribution to meristem homeostasis remains unexplored. Our analyses report that both loss- and gain-of-function BR-related mutants in Arabidopsis thaliana have reduced meristem size, indicating that balanced BR signalling is needed for the optimal root growth. In the BR-insensitive bri1-116 mutant, the expression pattern of the cell division markers CYCB1;1, ICK2/KRP2 and KNOLLE revealed that a decreased mitotic activity accounts for the reduced meristem size; accordingly, this defect could be overcome by the overexpression of CYCD3;1. The activity of the quiescent centre (QC) was low in the short roots of bri1-116, as reported by cell type-specific markers and differentiation phenotypes of distal stem cells. Conversely, plants treated with the most active BR, brassinolide, or mutants with enhanced BR signalling, such as bes1-D, show a premature cell cycle exit that results in early differentiation of meristematic cells, which also negatively influence meristem size and overall root growth. In the stem cell niche, BRs promote the QC renewal and differentiation of distal stem cells. Together, our results provide evidence that BRs play a regulatory role in the control of cell-cycle progression and differentiation in the Arabidopsis root meristem.  相似文献   

18.
Whereas the morphogenesis of developing organisms is relatively well understood at the molecular level, the contribution of the mechanical properties of the cells to shape changes remains largely unknown, mainly because of the lack of quantified biophysical parameters at cellular or subcellular resolution. Here we designed an atomic force microscopy approach to investigate the elastic modulus of the outer cell wall in living shoot apical meristems (SAMs). SAMs are highly organized structures that contain the plant stem cells, and generate all of the aerial organs of the plant. Building on modeling and experimental data, we designed a protocol that is able to measure very local properties, i.e. within 40-100 nm deep into the wall of living meristematic cells. We identified three levels of complexity at the meristem surface, with significant heterogeneity in stiffness at regional, cellular and even subcellular levels. Strikingly, we found that the outer cell wall was much stiffer at the tip of the meristem (5 ± 2 MPa on average), covering the stem cell pool, than on the flanks of the meristem (1.5 ± 0.7 MPa on average). Altogether, these results demonstrate the existence of a multiscale spatialization of the mechanical properties of the meristem surface, in addition to the previously established molecular and cytological zonation of the SAM, correlating with regional growth rate distribution.  相似文献   

19.
During postembryonic development, all organs of a plant are ultimately derived from a few pluripotent stem cells found in specialized structures called apical meristems. Here we discuss our current knowledge about the regulation of plant stem cells and their environments with main emphasis on the shoot apical meristem of Arabidopsis thaliana. Recent studies suggest that stem cells are localized in specialized niches where signals from surrounding cells maintain their undifferentiated state. In the shoot meristem, initiation of stem cells during embryogenesis, regulation of stem-cell homeostasis and termination of stem-cell maintenance during flower development appear to primarily involve regulation of the stem-cell niche.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号