首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
Photoperiodic inhibition of potato tuberization: an update   总被引:1,自引:0,他引:1  
  相似文献   

6.
7.
8.
In the obligate short‐day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24‐h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.  相似文献   

9.
The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F ( St PHYF ) played essential roles in photoperiodic tuberization in potato. By suppressing the St PHYF gene, the strict short‐day potato genotype exhibited normal tuber formation under long‐day ( LD ) conditions, together with the degradation of the CONSTANTS protein St COL 1 and modulation of two FLOWERING LOCUS  T ( FT ) paralogs, as demonstrated by the repression of St SP 5G and by the activation of St SP 6A during the light period. The function of St PHYF was further confirmed through grafting the scion of St PHYF ‐silenced lines, which induced the tuberization of untransformed stock under LD s, suggesting that St PHYF was involved in the production of mobile signals for tuberization in potato. We also identified that St PHYF exhibited substantial interaction with St PHYB both in vitro and in vivo . Therefore, our results indicate that St PHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with St PHYB .  相似文献   

10.
11.
12.
13.
14.
15.
16.
We studied the effect of the ectopic expression of the Arabidopsis PHYB gene, which encodes the phytochrome B (phyB) apoprotein, under the control of cauliflower mosaic virus 35S promoter on the photoperiodic response of tuberization and growth of potato (Solanum tuberosum L., cv. Désirée) transformed lines. Stem cuttings of transformed and control plants were cultured on Murashige and Skoog nutrient medium containing 5 or 8% sucrose in the phytotron chambers at 20°C under conditions of a long day (16 h), a short day (10 h), or in darkness. We showed that the overexpression of the PHYB gene enhanced the inhibitory effect of the long day on tuberization. In addition, tuber initiation in these transformed plants occurred at a higher sucrose concentration. The insertion of the PHYB gene decreased plant and tuber weights and shortened stems and internodes. Thus, we demonstrated the complex result of the PHYB gene insertion: it affected the photoperiodic response of tuberization, the control of tuber initiation by sucrose, and the growth of potato vegetative organs.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号