首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sympatric species are expected to differ in ecological requirements to minimize niche overlap and avoid competition. Here we assess the trophic interactions among three coexisting dolphin species from southern Brazil: the franciscana dolphin (Pontoporia blainvillei), the Guiana dolphin (Sotalia guianensis), and the Lahille's bottlenose dolphin (Tursiops truncatus gephyreus). We evaluated temporal variation in carbon (δ13C) and nitrogen (δ15N) isotope values of bone collagen to examine potential dietary shifts resulting from increased fishing activity over the past three decades. We estimated the degree of niche overlap among these species and the contribution of potential prey sources to their diet. δ15N values were consistent among species and across years, while δ13C values increased for Guiana dolphins and decreased for bottlenose dolphins, suggesting changes in diet and/or foraging habitats through time. The similar δ13C and δ15N values and the high niche overlap between Guiana and bottlenose dolphins indicate that these species are primarily feeding on demersal prey. The franciscana diet is primarily composed of pelagic prey, resulting in a lower niche overlap in comparison with the other dolphin species. Our study provides further information about the foraging ecology of this unique dolphin community in southern Brazil with implications for its management and conservation.  相似文献   

2.
Irrawaddy dolphins (Orcaella brevirostris) are threatened, little‐known cetaceans primarily jeopardized by fishing gear entanglement. Information regarding life history, foraging ecology, and movement are crucial to determine management units and conservation regions. This is the first analysis of the ontogenetic changes in diet and habitat of Irrawaddy dolphins from the Gulf of Thailand and the Andaman Sea using stable isotopes from skin and teeth. Results suggest limited age and sex structure indicated by weak ontogenetic and sexual variability in δ15N and δ13C in teeth. Significant variation in δ13C and δ15N values were observed between three Gulf regions and the Andaman Sea, indicating distinct regional groups. Isotope mixing models run on soft tissues from the eastern Gulf revealed a diet based primarily on fishes and secondarily on crustaceans, suggesting overlap with fishery targets. Conservation strategies that focus on reducing regional competition with humans and bycatch mortality are proposed. Fishing gear improvements and monitoring of fishing operations are a potential immediate response to reduce anthropogenic impact.  相似文献   

3.
Distinguishing discrete population units among continuously distributed coastal small cetaceans is challenging and crucial to conservation. We evaluated the utility of stable isotopes in assessing group membership in bottlenose dolphins (Tursiops truncatus) off west-central Florida by analyzing carbon, nitrogen, and sulfur isotope values (δ13C, δ15N, and δ34S) of tooth collagen from stranded dolphins. Individuals derived from three putative general population units: Sarasota Bay (SB), nearshore Gulf of Mexico (GULF), and offshore waters (OFF). Animals of known history (SB) served to ground truth the approach against animals of unknown history from the Gulf of Mexico (GULF, OFF). Dolphin groups differed significantly for each isotope. Average δ13C values from SB dolphins (−10.6‰) utilizing sea grass ecosystems differed from those of GULF (−11.9‰) and OFF (−11.9‰). Average δ15N values of GULF (12.7‰) and OFF (13.2‰) were higher than those of SB dolphins (11.9‰), consistent with differences in prey trophic levels. δ34S values showed definitive differences among SB (7.1‰), GULF (11.3‰), and OFF (16.5‰) dolphins. This is the first application of isotopes to population assignment of bottlenose dolphins in the Gulf of Mexico and results suggest that isotopes may provide a powerful tool in the conservation of small cetaceans.  相似文献   

4.
The δ13C and δ15N compositions of teeth used in combination with existing data provide dietary information for different populations of western North Atlantic bottlenose dolphins (Tursiops truncatus). The dental isotopic signatures of bottlenose dolphins collected during the 1980s significantly differ for coastal and offshore ecotypes and are consistent with reports that coastal forms feed primarily on fish whereas offshore individuals consume more squid. In a second study, the isotopic compositions of teeth from bottlenose dolphins that span a 100-yr period and data from published stomach content analyses as well as field observations made during the past 100 yr provide evidence that coastal bottlenose dolphins from the 1880s, 1920s, and 1980s had similar diets.  相似文献   

5.

We report the first recorded interactions between bottlenose dolphin (Tursiops truncatus) and Commerson’s dolphins (Cephalorhynchus commersonii). The diurnal behavioral patterns of bottlenose dolphins in Bahía Engaño, Argentina, were similar to those described for other coastal populations around the world. The majority of the feeding bouts were recorded near the mouth the Chubut River. When not feeding near the river, bottlenose dolphins generally swam along the coast, and interactions with Commerson’s dolphins were recorded very close to the shore on two occasions during a 3-year period. In the first event, both species were feeding on a fish school. The second interaction was aggressive in nature, involving one juvenile and three adult bottlenose dolphins with several Commerson’s dolphins. Two of the adult bottlenose dolphins attacked the Commerson’s dolphins. We propose that the observed behavior represented defense of the juvenile bottlenose dolphin.

  相似文献   

6.
World populations or stock distinction of Tursiops truncatus has been difficult to assess, because of large variations in morphology, habitat, feeding habits, and social structure among areas, which may reflect phylogenetic segregation or ecological plasticity. In the Gulf of California, Mexico, two common bottlenose dolphin ecotypes (inshore and offshore) have been reported. The offshore ecotype is frequently observed in association with sperm whales (Physeter macrocephalus) but the reason for this is still unknown. To explore the degree of resource partitioning/overlap between these species and stocks, we used skin stable isotope values (δ13C, δ15N) to estimate quantitative metrics of isotopic niche width (Bayesian standard ellipse areas, SEAB) and estimated their diet composition using Bayesian isotopic mixing models. The inshore ecotype in different regions (north, central, and south) of the Gulf of California exhibited distinct δ15N values and SEAB, suggesting a latitudinal gradient in nitrogen sources of coastal localities. The SEAB of inshore and offshore bottlenose dolphin ecotypes was completely distinct, indicating resource partitioning. Associated offshore ecotype and sperm whales had overlapping SEAB. The isotopic mixing model indicates that a considerable proportion of both species’ diet is large Humbolt squid. Our results suggest that resource partitioning and species association are two strategies that bottlenose dolphin ecotypes use in this zone.  相似文献   

7.
8.
Whistle characteristics were quantitatively compared between both geographically separated and neighboring populations of Atlantic spotted dolphins (Stenella frontalis), bottlenose dolphins (Tursiops truncatus), and pilot whales (Globicephala spp.) in U.S. waters to evaluate if intraspecific acoustic differences exist between groups. We compared nine whistle characteristics between continental shelf and offshore Atlantic spotted dolphins in the western North Atlantic and between northern Gulf of Mexico and western North Atlantic bottlenose dolphins and pilot whales using discriminant analysis. Offshore Atlantic spotted dolphin whistles were significantly different (Hotelling's T2, P= 0.0003) from continental shelf whistles in high frequency, bandwidth, duration, number of steps, and number of inflection points. Atlantic bottlenose dolphin whistles were significantly different (Hotelling's T2, P < 0.0001) from those in the Gulf of Mexico in duration, number of steps, and number of inflection points. There was no significant difference between pilot whale whistles in the two basins. The whistle differences indicate acoustic divergence between groups in different areas that may arise from geographic isolation or habitat separation between neighboring but genetically distinct populations of dolphins. This study supports the premise that acoustic differences can be a tool to evaluate the ecological separation between marine mammal groups in field studies.  相似文献   

9.
Teeth of odontocetes accumulate annual dentinal growth layer groups (GLGs) that record isotope ratios, which reflect the time of their synthesis. Collectively, they provide lifetime records of individual feeding patterns from which life history traits can be inferred. We subsampled the prenatal dentin and postnatal GLGs in Risso's dolphins (Grampus griseus) (n = 65) that stranded or were collected as bycatch in Taiwan (1994–2014) and analyzed them for δ15N and δ13C. Age‐specific δ15N and δ13C values were corrected for effects of calendar year, stranding site, C/N, and sex. δ15N values were higher in prenatal layers (14.94‰ ± 0.74‰) than in adult female GLGs (12.58‰ ± 0.20‰), suggesting fetal enrichment during gestation. Decreasing δ15N values in early GLGs suggested changes in dietary protein sources during transition to complete weaning. Weaning age was earlier in males (1.09 yr) than in females (1.81 yr). Significant differences in δ15N values between weaned males and females suggest potential sexual segregation in feeding habits. δ13C values increased from the prenatal to the 4th GLG by ~1.0‰, indicative of a diet shift from 13C‐depleted milk to prey items. Our results provide novel insights into the sex‐specific ontogenetic changes in feeding patterns and some life history traits of Risso's dolphins.  相似文献   

10.
This study examines resource use (diet, habitat use, and trophic level) within and among demographic groups (males, females, and juveniles) of bottlenose dolphins (Tursiops truncatus). We analyzed the δ13C and δ15N values of 15 prey species constituting 84% of the species found in stomach contents. We used these data to establish a trophic enrichment factor (TEF) to inform dietary analysis using a Bayesian isotope mixing model. We document a TEF of 0‰ and 2.0‰ for δ13C and δ15N, respectively. The dietary results showed that all demographic groups relied heavily on low trophic level seagrass‐associated prey. Bayesian standard ellipse areas (SEAb) were calculated to assess diversity in resource use. The SEAb of females was nearly four times larger than that of males indicating varied resource use, likely a consequence of small home ranges and habitat specialization. Juveniles possessed an intermediate SEAb, generally feeding at a lower trophic level compared to females, potentially an effect of natal philopatry and immature foraging skills. The small SEAb of males reflects a high degree of specialization on seagrass associated prey. Patterns in resource use by the demographic groups are likely linked to differences in the relative importance of social and ecological factors.  相似文献   

11.
Bottlenose dolphins (Tursiops truncatus) along the Gulf of Mexico are frequently exposed to blooms of the toxic alga, Karenia brevis, and brevetoxins associated with these blooms have been implicated in several dolphin mortality events. Studies on brevetoxin accumulation in dolphins have typically focused on analyses of carcasses from large‐scale die‐offs; however, data are scarce for brevetoxin loads in live individuals frequently exposed to K. brevis blooms. This study investigated in vivo brevetoxin exposure in free‐ranging bottlenose dolphins resident to Sarasota Bay, Florida, utilizing samples collected during health assessments performed during multiple K. brevis blooms occurring from 2003 to 2005. Brevetoxins were detected by ELISA and LC‐MS in 63% of bottlenose dolphins sampled (n= 30) concurrently with a K. brevis bloom. Brevetoxins were present in urine and gastric samples at concentrations ranging from 2 to 9 ng PbTx‐3 eq/g, and in feces at concentrations ranging from 45 to 231 ng PbTx‐3 eq/g. Samples from individuals (n= 12) sampled during nonbloom conditions (≤1,000 cells/L) were negative for brevetoxin activity. Brevetoxin accumulation data from this study complement dolphin carcass and prey fish data from the same study area, and aid in evaluating impacts of harmful algal blooms on sentinel marine animal species along the west Florida coast.  相似文献   

12.
Diet analysis allows exploring how coastal dolphins interact with the environment and their role in the marine food webs. We studied the diet and feeding ecology of the Guiana dolphin, Sotalia guianensis, through analysis of stomach content from 42 animals stranded on the eastern coast of Brazil. A total of 1,336 semidigested prey items (fish, otoliths, cephalopod beaks, and crustaceans) were identified. Teleost fish comprised the most frequent food item (92% of the total), followed by cephalopods, and crustaceans. Prey belonged to 34 taxa and richness in individual stomachs varied from 1 to 15 prey taxa. Prey were generally small, but showed a significant trend to increase in size with dolphin length. The main prey of Guiana dolphins were demersal, estuarine, and sound-making fish such as catfish and sciaenids. No sex-related differences in diet were found. Diet composition varied seasonally and occurrence of prey items was coherent with breeding or high abundance periods of some fish species and squids. Our study shows the importance of demersal prey from estuarine and soft-sediment habitats to Guiana dolphin in the Abrolhos Bank and reveals that feeding habits are generalist and opportunistic, with diet reflecting the seasonal abundance and availability of prey.  相似文献   

13.
Stable isotope (δ13C and δ15N) and gut content analyses were used to investigate size‐related feeding habits of four reef fishes (the beaugregory Stegastes leucostictus, the french grunt Haemulon flavolineatum, the schoolmaster snapper Lutjanus apodus and the yellowtail snapper Ocyurus chrysurus) inhabiting an offshore (non‐estuarine) mangrove islet off Belize, Central America. Comparisons of isotopic niche space and Schoener diet similarity index suggested a low to moderate degree of niche overlap between fish size groups. The δ13C gradient between mangrove and seagrass prey as well as results of Bayesian mixing models revealed that sampled fishes relied mostly on seagrass prey items. Only small and large juveniles of the carnivorous species L. apodus derived a part of their diet from mangroves by targeting mangrove‐associated Grapsidae crabs and fish prey, respectively. Isotopic niche shifts were particularly obvious for carnivorous fishes that ingested larger prey items (Xanthidae crabs and fishes) during their ontogeny. The utilization of mangrove food resources is less than expected and depends on the ecology and life history of the fish species considered. This research highlights that mangrove‐derived carbon contributed relatively little to the diets of four fish taxa from an offshore mangrove islet.  相似文献   

14.
Using photo‐identification data, bottlenose dolphin (Tursiops truncatus) populations can be differentiated based on their use of particular estuaries or coastal habitats. Questions remain, however, about the validity of such fine‐scale population partitioning and whether the resulting assemblages utilize unique forage bases. To address the issue of forage base use, stable isotopes of carbon (δ13C), nitrogen (δ15N) and sulfur (δ34S) were analyzed from skin tissues (n= 74) of bottlenose dolphins sampled seasonally along the coast and in three estuaries near Charleston, South Carolina. Autumn values of δ34S, δ15N, and δ13C and summer values of δ34S indicated that dolphins sampled from these four assemblages utilized unique forage bases, despite limited sample sizes. Likewise, autumn and spring differences in δ15N and δ13C values were evident in the North Edisto River, and in δ34S from dolphins sampled from all three estuarine assemblages; no seasonal differences were identified in the coastal assemblage. Results demonstrate the importance of considering spatial and temporal variation in forage base when developing local management plans for bottlenose dolphin and highlight the discriminatory power of δ34S for estuarine and coastal marine mammals. These results also suggest that stable isotopes could be developed as a complementary tool for photo‐identification based partitioning of bottlenose dolphin populations.  相似文献   

15.
Humpback whales feed on a variety of prey, but significant differences likely occur between regional feeding grounds. In this study, the diets of humpback whales were analyzed by comparing stable isotope ratios in animal tissues at three humpback whale feeding grounds in the Russian Far East: Karaginsky Gulf, Anadyr Gulf, and the Commander Islands. Anadyr Gulf is a neritic zone far from a shelf break, Karaginsky Gulf is a neritic zone close to a shelf break, and the Commander Islands represent an open oceanic ecosystem where whales feed off the shelf break. Samples from the Commander Islands had the lowest mean δ13C and δ15N values (mean ± SE: δ13C = ?18.7 ± 0.1, δ15N = 10.4 ± 0.1) compared to the samples from Karaginsky Gulf (δ13C = ?17.2 ± 0.1, δ15N = 12.7 ± 0.2) and Anadyr Gulf (δ13C= ?17.8 ± 0.1, δ15N = 14.0 ± 0.4). The samples from Anadyr Gulf had the highest δ15N values, while the samples from Karaginsky Gulf had the highest δ13C values. Both δ13C and δ15N values differed significantly among all three areas. Our data support the hypothesis that humpback whales tend to feed on fish in neritic areas and on plankton in deep oceanic waters.  相似文献   

16.
We used stable isotope analysis to investigate the foraging ecology of coastal bottlenose dolphins (Tursiops truncatus) in relation to a series of anthropogenic disturbances. We first demonstrated that stable isotopes are a faithful indicator of habitat use by comparing muscle isotope values to behavioral foraging data from the same individuals. δ13C values increased, while δ34S and δ15N values decreased with the percentage of feeding observations in seagrass habitat. We then utilized stable isotope values of muscle to assess temporal variation in foraging habitat from 1991 to 2010 and collagen from tooth crown tips to assess the time period 1944 to 2007. From 1991 to 2010, δ13C values of muscle decreased while δ34S values increased indicating reduced utilization of seagrass habitat. From 1944 to 1989 δ13C values of the crown tip declined significantly, likely due to a reduction in the coverage of seagrass habitat and δ15N values significantly increased, a trend we attribute to nutrient loading from a rapidly increasing human population. Our results demonstrate the utility of using marine mammal foraging habits to retrospectively assess the extent to which anthropogenic disturbance impacts coastal food webs.  相似文献   

17.
The objective of the study was to identify key elements of the feeding ecology of the dolphinfish, which is a high tropic predator important for sport and artisanal fishing in the Mexican Pacific. Feeding habits were investigated during the years 2000–2003. This species is seasonal in the southern Gulf of California and probably remains there because of the abundant prey. The contents of 232 dolphinfish stomachs were analyzed, identifying 98 prey species, although only eight of these were well‐represented in the diet. The most important prey by weight was the fish Hemiramphus saltator, however by number and frequency of occurrence was the crustacean Hemisquilla californiensis. No differences in the diet were found between males and females, although there was an ontogenic diet shift between seasons. There was no relationship between dolphinfish size and prey size, because dolphinfish fed preferentially on prey with an average size of 4.7 cm.  相似文献   

18.
To gain a better understanding on the trophic ecology of New Granada sea catfish, Ariopsis canteri, and their linkage to mangroves, nitrogen and stable carbon isotopes (δ15N and δ13C), as well as Bayesian mixing models, were used to explore trophic dynamics and potential ontogenic feeding shifts across different size classes: class I (8–20 cm), class II (21–32 cm) and class III (>32 cm). The study area was the estuary of the Atrato River Delta, where information about fish ecology is scarce. The δ13C of size class I was lower (mean ± s.d . = −24.96 ± 0.69‰) than that of size classes II (−22.20 ± 0.90‰) and III (−22.00 ± 1.96‰). The δ15N of size class I was lower (mean ± s.d . = 8.50 ± 0.67‰) than that of size classes II (9.77 ± 0.60‰) and III (10.00 ± 0.66‰). Body size was positively and significantly correlated to δ15N and δ13C. Individuals with LT > 32 cm presented the highest estimated trophic position (3.8). Five-source mixing models indicated that for class I, the mean estimated contribution of macroalgae was the highest (6%–57% c.i. ), and for classes II and III, the mean estimated contribution of macrophytes was the highest (3%–53% c.i. and 4%–53% c.i. , respectively). Ontogenetic feeding shifts of A. canteri were confirmed evidencing decreasing intraspecific competition between small and large individuals. Results suggest that mangroves are a nursery and feeding ground habitat for this species and that mangroves support A. canteri mainly due to the substrate/habitat that supports sources in the food webs. These results can be used in ecosystem-based fishery management focused on the protection of extensive mangrove areas in the southern Caribbean Sea.  相似文献   

19.
Stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were used to investigate feeding patterns of larval and early juvenile pelagic fishes in slope waters of the Gulf of Mexico. Contribution of organic matter supplied to fishes and trophic position within this pelagic food web was estimated in 2007 and 2008 by comparing dietary signatures of the two main producers in this ecosystem: phytoplankton [based on particulate organic matter (POM)] and Sargassum spp. Stable isotope ratios of POM and pelagic Sargassum spp. were significantly different from one another with δ13C values of POM depleted by 3–6‰ and δ15N values enriched by 2 relative to Sargassum spp. Stable isotope ratios were significantly different among the five pelagic fishes examined: blue marlin Makaira nigricans, dolphinfish Coryphaena hippurus, pompano dolphinfish Coryphaena equiselis, sailfish Istiophorus platypterus and swordfish Xiphias gladius. Mean δ13C values ranged almost 2 among fishes and were most depleted in I. platypterus. In addition, mean δ15N values ranged 4–5 with highest mean values found for both C. hippurus and C. equiselis and the lowest mean value for M. nigricans during both years. Increasing δ13C or δ15N with standard length suggested that shifts in trophic position and diet occurred during early life for several species examined. Results of a two‐source mixing model suggest approximately an equal contribution of organic matter by both sources (POM = 55%; pelagic Sargassum spp. = 45%) to the early life stages of pelagic fishes examined. Contribution of organic matter, however, varied among species, and sensitivity analyses indicated that organic source estimates changed from 2 to 13% for a δ13C fractionation change of ±0·25‰ or a δ15N fractionation change of ± 1·0‰ relative to original fractionation values.  相似文献   

20.
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号